直接最短路板子,dij堆优化。
题干:
题目描述 贝茜在和约翰玩一个“捉迷藏”的游戏. 她正要找出所有适合她躲藏的安全牛棚.一共有N(2≤N≤20000)个牛棚,被编为1到N号.她知道约翰(捉牛者)从牛棚1出发.所有的牛棚由M(1≤M≤50000)条双向路连接,每条双向路连接两个不同的牛棚.所有的牛棚都是相通的.贝茜认为同牛棚1距离最远的的牛棚是安全的.两个牛棚间的距离是指,从一个牛棚到另一个牛棚最少需要通过的道路数量.请帮贝茜找出所有的安全牛棚. 输入格式 第1行输入两个整数N和M,之后M行每行输入两个整数,表示一条路的两个端点. 输出格式 仅一行,输出三个整数.第1个表示安全牛棚(如果有多个,输出编号最小的);第2个表示牛棚1和安全牛棚的距离;第3个表示有多少个安全的牛棚. 样例输入 6 7 3 6 4 3 3 2 1 3 1 2 2 4 5 2 样例输出 4 2 3 提示 没有写明提示
代码:
#include<iostream> #include<cstdio> #include<cmath> #include<ctime> #include<queue> #include<algorithm> #include<cstring> using namespace std; #define duke(i,a,n) for(int i = a;i <= n;i++) #define lv(i,a,n) for(int i = a;i >= n;i--) #define clean(a) memset(a,0,sizeof(a)) #define mp make_pair #define pr pair<int,int> const int INF = 1e9 + 7; typedef long long ll; typedef double db; template <class T> void read(T &x) { char c; bool op = 0; while(c = getchar(), c < '0' || c > '9') if(c == '-') op = 1; x = c - '0'; while(c = getchar(), c >= '0' && c <= '9') x = x * 10 + c - '0'; if(op) x = -x; } template <class T> void write(T x) { if(x < 0) putchar('-'), x = -x; if(x >= 10) write(x / 10); putchar('0' + x % 10); } int dis[20005]; struct node { int l,r,nxt; }a[100005]; int len = 0,lst[20005]; priority_queue <pr,vector <pr>,greater<pr> > q; bool vis[20005]; void add(int x,int y) { a[++len].l = x; a[len].r = y; a[len].nxt = lst[x]; lst[x] = len; } void dij() { memset(dis,60,sizeof(dis)); clean(vis); dis[1] = 0; q.push(mp(dis[1],1)); while(!q.empty()) { pr u = q.top(); q.pop(); int x = u.second; if(vis[x]) continue; vis[x] = 1; for(int i = lst[x];i;i = a[i].nxt) { int y = a[i].r; if(dis[y] > dis[x] + 1) { dis[y] = dis[x] + 1; q.push(mp(dis[y],y)); } } } } int n,m; int main() { read(n);read(m); duke(i,1,m) { int x,y; read(x);read(y); add(x,y); add(y,x); } dij(); int maxn = 0,cnt = 0,k = 0; duke(i,1,n) { if(maxn < dis[i]) { maxn = dis[i]; cnt = 1; k = i; } else if(maxn == dis[i]) { cnt++; } } // cout<<endl; printf("%d %d %d\n",k,dis[k],cnt); return 0; }