Limits
The fundamental idea in calculus is to make calculations on
functions as a variable “gets close to” or approaches
a certain value. Recall that the definition of the derivative is given
by a limit
f'(x)=limh→0f(x+h)−f(x)h,
provided this limit exists. Symbolic Math Toolbox™ software
enables you to calculate the limits of functions directly. The commands
syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
which return
ans =
-sin(x)
and
limit((1 + x/n)^n, n, inf)
which returns
ans =
exp(x)
illustrate two of the most important limits in mathematics:
the derivative (in this case of cos(x))
and the exponential function.One-Sided Limits
You can also calculate one-sided limits with Symbolic Math Toolbox software. For example, you can calculate the limit of
x/|x|, whose graph is shown in the following
figure, as x approaches 0 from the left or from the right.
syms x
fplot(x/abs(x), [-1 1], 'ShowPoles', 'off')
To calculate the limit as x approaches 0 from the left,
limx→0−x|x|,
enter
syms x
limit(x/abs(x), x, 0, 'left')
ans =
-1
To calculate the limit as x approaches 0 from the right,
limx→0+x|x|=1,
enter
syms x
limit(x/abs(x), x, 0, 'right')
ans =
1
Since the limit from the left does not equal the limit from
the right, the two- sided limit does not exist. In the case of undefined
limits, MATLAB® returns NaN (not a number).
For example,
syms x
limit(x/abs(x), x, 0)
returns
ans =
NaN
Observe that the default case, limit(f) is the same as
limit(f,x,0). Explore the options for the limit command
in this table, where f is a function of the symbolic object
x.
Mathematical OperationMATLAB Commandlimx→0f(x)limit(f)
limx→af(x)limit(f, x, a) or
limit(f, a)
limx→a−f(x)limit(f, x, a, 'left')
limx→a+f(x)limit(f, x, a, 'right')