C语言的数据序列化
64位平台C/C++开发注意事项
在/en/l/上例出了28个在64位平台上使用C/C++开发的注意事项,对于进入64位时代的程序员应该去看看这28个事项,这些英文读物对于有C/C++功底的朋友读起来应该并不难,我估计大约20-30分钟可以精读完一篇(或者更快),下面是这28个注意事项的列表。相信对大家一点有帮助。Bhui2014 Lesson 01. What 64-bit systems are. Lesson 02. S
数据结构的序列化是个很有用的东西。这几天在修改原来的资源管理模块,碰到从前做的几个数据文件解析的子模块,改得很烦,就重新思考序列化的方案了。Java 和 .Net 等,由于有完整的数据元信息,语言便提供了完善的序列化解决方案。C++ 对此在语言设计上有所缺陷,所以并没有特别好的,被所有人接受的方案。现存的 C++ serialization 方案多类似于 MFC 在二十年前的做法。而后,boost 提供了一个看起来更完备的方案( boost.serialization )。所谓更完备,我指的是非侵入。 boost 的解决方案用起来感觉更现代,看起来更漂亮。给人一种 不需要修改已有的 C++ 代码,就能把本不支持 serialize 的类加上这个特性 的心理快感。换句话说,就是这件事情我能做的,至于真正做的事情会碰到什么,那就不得而知了。好吧,老实说,我不喜欢用大量苦力(或是高智慧的结晶?)堆积起来的代码。不管是别人出的力,还是我自己出的。另外,我希望有一个 C 的解决方案,而不是 C++ 的。所以从昨天开始,就抽了点时间来搞定这件事。
问题来至于 C/C++ 语言未提供类型元信息,那我们从根本上去解决好了。得到元信息的方案不在于使用奇怪的宏,我这个古板的 C 程序员,也用不起现代的 template 技术。其实自定义一下 C 的结构描述方式(创造个小语言),写个小程序去解析一下就行了。再用这个程序去生成 .h 文件,而供 serialization 库使用的元数据。如果暂不考虑让别的动态语言更方便的分析序列化后的数据(留给以后再扩展),其实,需要做序列化的对象仅仅只有两个数据类型:值类型和对其它类型的引用。对于值类型,我们可以简单的做内存拷贝,只需要知道值类型的长度。而引用,在内存中,则是简单的指针。序列化后则是相对数据块的偏移量。这里使用 base 1 ,这样可以允许 0 依旧表示空引用。我将引用分成两类,分别称呼为外引用,和内引用。所谓外引用,指这个引用指向一个不需要被序列化的数据块。在做序列化时,库会把这个外引用翻译成一个原子(通常表现为一个唯一的字符串)。数据展开时,再将原子还原成外引用。比如:文件或窗口句柄就可以被翻译成携带有文件名信息,或窗口标题信息的原子(这个取决于具体实现)。内引用:指引用的数据类型也为序列化模块所知。被引用的数据同样需要被加入序列化的数据块中。如果能正确的处理好所有的内引用关系,被引用的数据其实是内存地址无关的。在我定义的需求中,序列化模块应该尽可能的合并掉值相同的数据块。比如当字符串的值相同时,在序列化结果中就只应该存在一份。如果需要序列化一颗树,相同值的的叶子节点,或完全相同的子树,都应该被合并掉。另外,序列化模块应该正确的处理环状结构。比如可以正确的序列化一个循环链表,或是复杂的有向图。考虑到时间复杂度不能超过多项式时间。不考虑合并值相同且拓扑结构相同的有环图。(尽管理论上是可以合并它们的)由于有上面两个需求,proto buff 等现成的库是用不了的。btw, 还有一个小需求:数组类型的长度可以不固定,是由同个结构中另一个整型变量的值决定的。我花了一天一晚初步实现上面的东西。元信息的定义和处理并不复杂。序列化库的接口也很简洁:传入数据指针,数据类型的元信息,让库去填充一个数据块即可。其实,序列化的对象就是一个有向有环图。整个实现的难点在于对相同节点的合并。一开始没太想清楚,本着先做对再优化的原则,使用了个最苯的算法。(最坏情况下,可能有 O(N!) 的时间复杂度)即一开始并不合并相同节点。遍历处理完整个图以后,计算每个节点的 hash 值,然后排序,去掉完全相同的节点,并反向修改引用它们的节点。然后反复这个过程,直到有效节点数不再减少。最后再把所有有效节点放在输出流中,最终调整一下所有的内部引用。今天和同事讨论了一下,觉得可以改进这个算法。创建两个集合,一个为有效节点的原子集合,另一个为原始数据块的引用集合。先在遍历原始数据块,同时把原始数据块的每个节点逐个加入原始数据块集合中(相同的原始指针会在这个步骤被去掉),并生成临时对象方便我们做进一步处理。这个临时对象上,可以附加遍历状态标记,hash 值,长度,等等信息。当一个节点上的所有引用均