BZOJ3162 独钓寒江雪(哈希+树形dp)

  数独立集显然是可以树形dp的,问题在于本质不同。

  假设已经给树确立了一个根并且找到了所有等效(注意是等效而不是同构)子树,那么对转移稍加修改使用隔板法就行了。

  关键在于找等效子树。首先将树的重心(若有两个则加一个点作为唯一重心)作为根。这样任意极大等效子树(比如某两个等效子树里面的一部分等效,那么里面这一部分就不是极大的)一定有相同的父亲,否则我们所选的根是肯定存在一棵子树大小大于树的一半的,与重心性质矛盾。那么判等效就只需要考虑子树内同构了。

  同构判断采取哈希。这里使用最简单的类似字符串哈希的做法,用子树大小哈希。在保证同构树哈希值相同的前提下尽量增加变数。

#include<iostream> 
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
#define N 500010
#define P 1000000007
#define ul unsigned long long
int n,p[N],p_new[N],f[N][2],size[N],q[N],inv[N],root,t=0;
ul hash[N];
struct data{int to,nxt;
}edge[N<<1],edge_new[N<<1];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void addedge_new(int x,int y){t++;edge_new[t].to=y,edge_new[t].nxt=p_new[x],p_new[x]=t;}
void dfs(int k,int from)
{
    size[k]=1;
    for (int i=p[k];i;i=edge[i].nxt)
    if (edge[i].to!=from)
    {
        dfs(edge[i].to,k);
        size[k]+=size[edge[i].to];
    }
}
void dfs2(int k,int from)
{
    for (int i=p[k];i;i=edge[i].nxt) 
    if (edge[i].to!=from)
    {
        addedge_new(k,edge[i].to);
        dfs2(edge[i].to,k);
    }
}
int findroot(int k,int from)
{
    int mx=0;
    for (int i=p[k];i;i=edge[i].nxt)
    if (edge[i].to!=from&&size[edge[i].to]>size[mx]) mx=edge[i].to;
    if ((size[mx]<<1)<=n) return k;
    else return findroot(mx,k);
}
int C(int n,int m)
{
    int ans=1;
    for (int i=n;i>=n-m+1;i--) ans=1ll*ans*i%P;
    return 1ll*ans*inv[m]%P;
}
bool cmp(const int&a,const int&b)
{
    return hash[a]<hash[b];
}
void gethash(int k)
{
    int cnt=0;
    for (int i=p[k];i;i=edge[i].nxt)
    q[++cnt]=hash[edge[i].to];
    sort(q+1,q+cnt+1);
    for (int i=1;i<=cnt;i++) hash[k]=hash[k]*107+q[i];
    hash[k]=(hash[k]*509+size[k])%P;
}
void dp(int k)
{
    for (int i=p[k];i;i=edge[i].nxt)
    dp(edge[i].to),gethash(edge[i].to);
    int cnt=0;
    for (int i=p[k];i;i=edge[i].nxt)
    q[++cnt]=edge[i].to;
    sort(q+1,q+cnt+1,cmp);
    f[k][0]=f[k][1]=1;
    for (int i=1;i<=cnt;i++)
    {
        int t=i;
        while (t<cnt&&hash[q[t+1]]==hash[q[i]]) t++;
        f[k][1]=1ll*f[k][1]*C(f[q[i]][0]+t-i,t-i+1)%P;
        f[k][0]=1ll*f[k][0]*C(f[q[i]][0]+f[q[i]][1]+t-i,t-i+1)%P;
        i=t;
    }
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj3162.in","r",stdin);
    freopen("bzoj3162.out","w",stdout);
    const char LL[]="%I64d\n";
#else
    const char LL[]="%lld\n";
#endif
    n=read();
    inv[0]=inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
    for (int i=2;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-1]%P;
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        addedge(x,y),addedge(y,x);
    }
    dfs(1,1);
    root=findroot(1,1);
    dfs(root,root);
    int v=0;
    for (int i=p[root];i;i=edge[i].nxt)
    if (!(n&1)&&size[edge[i].to]==(n>>1)) {v=edge[i].to;break;}
    t=0;
    if (v)
    {
        n++;dfs2(root,v);dfs2(v,root);
        addedge_new(n,root),addedge_new(n,v);root=n;
    }
    else dfs2(root,root);
    memcpy(p,p_new,sizeof(p));
    memcpy(edge,edge_new,sizeof(edge));
    dfs(root,root);
    dp(root);
    if (v)
    {
        int x=edge[p[root]].to,y=edge[edge[p[root]].nxt].to;
        if (hash[x]==hash[y])
        f[root][0]=(C(f[x][0]+1,2)+1ll*f[x][0]*f[x][1]%P)%P;
        else f[root][0]=(1ll*f[x][0]*(f[y][0]+f[y][1])%P+1ll*f[x][1]*f[y][0]%P)%P;
        f[root][1]=0;
    }
    cout<<(f[root][0]+f[root][1])%P;
    return 0;
}

 

转载于:https://www.cnblogs.com/Gloid/p/9671137.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值