《剑指offer》— JavaScript(10)矩形覆盖

矩形覆盖

题目描述

  我们可以用(2*1)的小矩形横着或者竖着去覆盖更大的矩形。请问用n个(2*1)的小矩形无重叠地覆盖一个(2*n)的大矩形,总共有多少种方法?


实现代码

function jumpFloor(number)
{
    if (number<0){
        return -1;
    }else if(number <=2){
        return number
    }
    var arr = [];
    arr[0] = 1;
    arr[1] = 2;
    for(var i = 2; i < number; i++) {
        arr[i] = arr[i - 1] + arr[i - 2];
    }
    return arr[number-1];

思路

1. 先上图:
  2*1的大矩形和2*n的小矩形:

图片.png

2. 第一次覆盖有两种情况:
  横着覆盖:

图片.png

  竖着覆盖:

图片.png
3. 由此可得:

  • 当第一次横着覆盖时,覆盖方法为f(n-2);
  • 当第一次竖着覆盖时,覆盖方法为f(n-1);
  • 因此f(n)=f(n-1)+f(n-2);
  • 当n=1时,只有1种覆盖方法,当n=2时,有2种覆盖方法。
  • 此题最终得出的仍然是一个斐波那契数列。
    n=1, f(n)=1
    n=2, f(n)=2
    n>2,且为整数, f(n)=f(n-1)+f(n-2)

转载于:https://www.cnblogs.com/echovic/p/6430666.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值