[转载] $CF117B$ 题解

阅读原文

给定两非负整数 \(a,b\) 以及模数 \(mod\) ,求两个由 \(9\) 位数字构成的字符串 \(A,B\) (允许包含前导 \(0\) )相连后对 \(mod\) 取模的值能否为 \(0\) ,要求 \(A\) 的值不超过 \(a\)\(B\) 的值不超过 \(b\) 。若取模后的值不能为 \(0\) 的话,还要输出字典序最小的使取模后的值不为 \(0\) 的字符串 \(A\)
看起来很有博弈论的味道。实际上可以通过一些数学方法转化为可做的题目:
因为取模会使得循环节出现,所以如果 \(a>mod\) ,我们可以只考虑一个循环节内 \(A\) 的取值;否则 \(A\) 就只要考虑取 \([0,a]\) 之间的整数。这是本题合理复杂度的保证。
那么我们只需要预处理出 \(B\) 能够得到的值,然后枚举 \(A\) ,判断是否能出现一个 \(A\) 不能和任何一个 \(B\) 组合能被 \(mod\) 整除的情况。如果出现的话,这个 \(A\) 就是字典序最小的字符串 \(A\) ;如果一整个循环节中都没有出现可行解,那么取模后的值就不能为 \(0\) 了。
有疑问的评论区见!
代码如下:

#include<bits/stdc++.h>
using namespace std;
inline int read()
{
    int ret=0,f=1;
    char ch=getchar();
    while(ch>'9'||ch<'0')
    {
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        ret=(ret<<1)+(ret<<3)+ch-'0';
        ch=getchar();
    }
    return ret*f;
}
int a,b,mod,ans;
inline int solve(int a,int b,int mod)
{
    int p=1000000000%mod;
    if(!p)
        return -1;
    if(b>=mod-1)
        return -1;
    int j=0;
    for(register int i=0;i<=min(a,mod);i++)
    {
        if(j>b)
            return i;
        j-=p;
        if(j<0)
            j+=mod;
    }
    return -1;
}
int main()
{
    a=read();
    b=read();
    mod=read();
    ans=solve(a,b,mod);
    if(ans==-1)
        printf("2\n");
    else
        printf("1 %09d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/Peter0701/p/11559776.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值