CodeForces - 377A Maze BFS逆思维

Maze

 

Pavel loves grid mazes. A grid maze is an n × m rectangle maze where each cell is either empty, or is a wall. You can go from one cell to another only if both cells are empty and have a common side.

Pavel drew a grid maze with all empty cells forming a connected area. That is, you can go from any empty cell to any other one. Pavel doesn't like it when his maze has too little walls. He wants to turn exactly k empty cells into walls so that all the remaining cells still formed a connected area. Help him.

Input

The first line contains three integers nmk (1 ≤ n, m ≤ 500, 0 ≤ k < s), where n and m are the maze's height and width, correspondingly, k is the number of walls Pavel wants to add and letter s represents the number of empty cells in the original maze.

Each of the next n lines contains m characters. They describe the original maze. If a character on a line equals ".", then the corresponding cell is empty and if the character equals "#", then the cell is a wall.

Output

Print n lines containing m characters each: the new maze that fits Pavel's requirements. Mark the empty cells that you transformed into walls as "X", the other cells must be left without changes (that is, "." and "#").

It is guaranteed that a solution exists. If there are multiple solutions you can output any of them.

Example

Input
3 4 2
#..#
..#.
#...
Output
#.X#
X.#.
#...
Input
5 4 5
#...
#.#.
.#..
...#
.#.#
Output
#XXX
#X#.
X#..
...#
.#.#



这是一道好题!题意是通过添加k个障碍使得原图继续保持连通状态。当然不能搜索加点,这会破坏之前的连通性。因此我们可以搜索出一个连通块,使得大小=kk-k(kk为原图可行域.点数) 没被标记的点除#墙外,未搜索的可行域.就是加点X位置。


#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;

int n,m,k,kk;
char a[505][505];
int b[505][505];
int t[4][2]={{1,0},{0,1},{-1,0},{0,-1}};
struct Node{
    int x,y;
}node;

void bfs(int i,int j)
{
    int c,tx,ty,ij;
    queue<Node> q;
    memset(b,0,sizeof(b));
    b[i][j]=1;
    node.x=i;
    node.y=j;
    q.push(node);
    c=1;
    if(c==kk-k) return;    //卡在第8个点,不加TLE。。
    while(q.size()){
        for(ij=0;ij<4;ij++){
            tx=q.front().x+t[ij][0];
            ty=q.front().y+t[ij][1];
            if(tx<0||ty<0||tx>=n||ty>=m) continue;
            if(a[tx][ty]=='.'&&b[tx][ty]==0){
                c++;
                b[tx][ty]=1;
                node.x=tx;
                node.y=ty;
                q.push(node);
            }
            if(c==kk-k) return;
        }
        q.pop();
    }
}
int main()
{
    int bx,by,i,j;
    scanf("%d%d%d",&n,&m,&k);
    kk=0;
    for(i=0;i<n;i++){
        getchar();
        scanf("%s",a[i]);
        for(j=0;j<m;j++){
            if(a[i][j]=='.'){
                kk++;
                bx=i;
                by=j;
            }
        }
    }
    bfs(bx,by);
    for(i=0;i<n;i++){
        for(j=0;j<m;j++){
            if(b[i][j]==0&&a[i][j]!='#') printf("X");
            else printf("%c",a[i][j]);
        }
        printf("\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/yzm10/p/7230982.html

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值