Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Your KthLargest
class will have a constructor which accepts an integer k
and an integer array nums
, which contains initial elements from the stream. For each call to the method KthLargest.add
, return the element representing the kth largest element in the stream.
Example:
int k = 3; int[] arr = [4,5,8,2]; KthLargest kthLargest = new KthLargest(3, arr); kthLargest.add(3); // returns 4 kthLargest.add(5); // returns 5 kthLargest.add(10); // returns 5 kthLargest.add(9); // returns 8 kthLargest.add(4); // returns 8
Note:
You may assume that nums
' length ≥ k-1
and k
≥ 1.
Approach #1: C++.[priority_queue]
class KthLargest {
public:
KthLargest(int k, vector<int> nums) {
size = k;
for (int i = 0; i < nums.size(); ++i) {
pq.push(nums[i]);
if (pq.size() > k) pq.pop();
}
}
int add(int val) {
pq.push(val);
if (pq.size() > size) pq.pop();
return pq.top();
}
private:
priority_queue<int, vector<int>, greater<int>> pq;
int size;
};
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/
Approach #2: Java.[BST]
class KthLargest {
TreeNode root;
int k;
public KthLargest(int k, int[] nums) {
this.k = k;
for (int num : nums) root = add(root, num);
}
public int add(int val) {
root = add(root, val);
return findKthLargest();
}
private TreeNode add(TreeNode root, int val) {
if (root == null) return new TreeNode(val);
root.count++;
if (val < root.val) root.left = add(root.left, val);
else root.right = add(root.right, val);
return root;
}
public int findKthLargest() {
int count = k;
TreeNode walker = root;
while (count > 0) {
int pos = 1 + (walker.right != null ? walker.right.count : 0);
if (count == pos) break;
if (count > pos) {
count -= pos;
walker = walker.left;
} else if (count < pos)
walker = walker.right;
}
return walker.val;
}
class TreeNode {
int val, count = 1;
TreeNode left, right;
TreeNode(int v) { val = v; }
}
}
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/
Approach #3: Python.[priority_queue].
class KthLargest(object):
def __init__(self, k, nums):
"""
:type k: int
:type nums: List[int]
"""
self.pool = nums
self.k = k
heapq.heapify(self.pool)
while len(self.pool) > k:
heapq.heappop(self.pool)
def add(self, val):
"""
:type val: int
:rtype: int
"""
if len(self.pool) < self.k:
heapq.heapq.push(self.pool, val)
elif val > self.pool[0]:
heapq.heapreplace(self.pool, val)
return self.pool[0]
# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)