杜教筛

题解:

还是好神奇啊。。。(依旧很套路啊)

https://blog.csdn.net/qq_30974369/article/details/79087445

杜教筛的复杂度是$n^{\frac{2}{3}}$的

1.杜教筛求mu(i)前缀和

这个首先要知道

$\sum(mu[i]) \ i|n = (n==1)$

2.杜教筛求欧拉函数前缀和

$\sum(phi[i]) \ i|n =i$ 这个推导也很套路啊。。

https://blog.csdn.net/zzkksunboy/article/details/78902549

bzoj 3944

这测试数据好像有点问题 第13组开始就不是这题的?

为了卡一波常数可以先预处理出1e7之内的

毕竟数组访问比map快多了(当然还可以hash优化)

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (int i=t;i>=h;i--)
#define ll long long
const int N=1e7+10;
const int M=1e7+1e5;
ll phi[M],mu[N];
int p[N],cnt;
bool t[M];
map<ll,ll> M1,P1;
ll Phi(ll x)
{
  if (x<=N) return(phi[x]);
  if (P1[x]) return(P1[x]);
  ll i=2;
  ll ans=x*(x+1)/2;
  while (i<=x)
  {
    ll j=x/(x/i);
    ans-=(j-i+1)*Phi(x/i);
    i=j+1;
  }
  P1[x]=ans;
  return ans;
}
ll Mu(ll x)
{
  if (x<=N) return(mu[x]);
  if (M1[x]) return(M1[x]);
  ll i=2;
  ll ans=1;
  while(i<=x)
  {
    ll j=x/(x/i);
    ans-=(j-i+1)*Mu(x/i);
    i=j+1;
  }
  M1[x]=ans;
  return ans;
}
int main()
{
  freopen("1.in","r",stdin);
  freopen("1.out","w",stdout);
  ios::sync_with_stdio(false);
  mu[1]=phi[1]=1; t[1]=1;
  rep(i,2,N)
  {
    if (!t[i]) p[++cnt]=i,mu[i]=-1,phi[i]=i-1;
    for (int j=1;j<=cnt&&i*p[j]<=N;j++)
    {
      t[i*p[j]]=1;
      if (i%p[j]==0)
      {
        phi[i*p[j]]=phi[i]*p[j]; mu[i*p[j]]=0;
        break;
      } else
      {
        mu[i*p[j]]=-mu[i];
        phi[i*p[j]]=phi[i]*phi[p[j]];
      }
    }
  }
  rep(i,1,N) phi[i]+=phi[i-1],mu[i]+=mu[i-1];
  int T;
  cin>>T;
  while (T--)
  {
    ll n;
    cin>>n;
    cout<<Phi(n)<<" "<<Mu(n)<<endl;
  }
  return 0;
}

 

转载于:https://www.cnblogs.com/yinwuxiao/p/9955417.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值