Naive solution for this problem would be caluclate all the possible combinations:
const numbers = [1, -3, 2 - 5, 7, 6, -1, -4, 11, -23]; // O(n^3) const findMaxSubAry = numbers => { let answer = Number.MIN_VALUE; /** * Calculate all the possible values and pick the max one * All possible values should be * length = 1, 2, ,3 ... n * Pick differnet start point */ // For different lenght for (let l = 0; l < numbers.length; l++) { // O(n) // For different start for (let s = 0; s < l; s++) { // O(n) if (s + l >= numbers.length) { break; } let sum = 0; for (let i = s; i < s + l; i++) { // O(n) sum += numbers[i]; } answer = Math.max(answer, sum); } } return answer; }; console.log(findMaxSubAry(numbers)); // 19
The maximum subarray problem is one of the nicest examples of dynamic programming application.
In this lesson we cover an example of how this problem might be presented and what your chain of thought should be to tackle this problem efficiently.
/** * Maximum Contiguous subarray algorithm * * Max(i) = Max(i-1) + v(i) * Max(i-1) < 0 ? v(i) : Max(i-1) * * Combining --------- maxInc(i) = maxInc(i - 1) > 0 ? maxInc(i - 1) + val(i) : val(i) max(i) = maxInc(i) > max(i - 1) ? maxInc(i) : max(i - 1) */ function maxSumSubArray(arr) { /** * inx | val | max_inc | max * 0 0 0 * 0 -2 0 0 * 1 -3 0 0 * 2 4 4 4 ---> start = 2 * 3 -1 3 4 * 4 -2 1 4 * 5 1 2 4 * 6 5 7 7 ---> end = 6 * 7 -3 4 7 */ let val = 0, max_inc = 0, max = 0, start = 0, end = 0; for (let i = 1; i < arr.length; i++) { val = arr[i]; max_inc = Math.max(max_inc + val, val); max = Math.max(max, max_inc); if (val === max_inc) { start = i; } if (max === max_inc) { end = i; } } if (end === 0) { end = start; } console.log(start, end); return arr.slice(start, end + 1); } console.log(maxSumSubArray([-2, -3, 4, -1, -2, 1, 5, -3])); //[4, -1, -2, 1, 5] console.log(maxSumSubArray([-2,-3,-4,-1,-2])); // [-2]
本文探讨了最大子数组问题的解决方案,首先介绍了朴素的O(n^3)算法,然后深入讲解了动态规划方法,通过最大连续子数组算法实现更高效的求解。文章通过具体示例说明了算法的运行过程,对比了不同情况下的最优解。

被折叠的 条评论
为什么被折叠?



