2013长沙全国邀请赛 总结

水平太渣. 唯有看完解题报告+标程 AK这套题.

 

A CircleGame. 

  需要取上整,核心点加上了一个小于1的小数.

当n = 2时,有 , 然后可以验证下当n取其他值时也满足。所以就有

, 则其特征方程的两个解为:

当 n = 2. 时, 其特征方程为:

化简得到:

因为

所以有:

S_2 - 2*a*S_1 + (a^2+b) = 0

得到线性递推关系, 然后矩阵快速幂随便搞搞就好了。

// Sn = ceil( [a + sqrt(b)]^n ) % m;

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;

typedef long long LL;

struct Matrix{
    LL mat[2][2];
    void zero(){memset(mat,0,sizeof(mat));}
    void unit(){zero();mat[0][0]=mat[1][1]=1;}
}A,T;

Matrix mult( Matrix a, Matrix b, int mod ){
    Matrix c; c.zero();
    for(int i = 0; i < 2; i++)
    for(int k = 0; k < 2; k++)
    for(int j = 0; j < 2; j++)
    {
        c.mat[i][j] += a.mat[i][k]*b.mat[k][j];
        c.mat[i][j] %= mod;
    }
    return c;
}
Matrix Pow( Matrix x, int n, int mod ){
    Matrix c; c.unit();
    while(n){
        if(n&1) c = mult(c,x,mod);
        x = mult(x,x,mod);
        n >>= 1;
    }
    return c;
}

void init(int a,int b){
    int a1 = 2*a, b1 = b-a*a;
    T.mat[0][0] = 0; T.mat[0][1] = 1;
    T.mat[1][0] = b1; T.mat[1][1] = a1;
    A.zero();
    A.mat[0][0] = 2; A.mat[1][0] = 2*a;
}
int main(){
    int a,b,n,m;
    while( scanf("%d%d%d%d",&a,&b,&n,&m) != EOF){
        init(a,b);
        T = Pow( T, n, m );
        A = mult( T, A, m );
        printf("%lld\n", (A.mat[0][0]+m)%m );
    }
    return 0;
}
View Code

 

D. Hunter

题意描述有点问题,应该问是否能够拿完全部宝藏,若可以则输出最小花费,否则为0. (事实上不存在宝藏拿不了的数据,保证有解).

解法是状态压缩. 整体思路:

  因为考虑到宝藏最多13个,则状态数量最多 2^13 = 8*1024, 而且拿宝藏的过程必定是一个一个拿.所以我们可以通过枚举线路.得到最优值.

状态方程:  dp( mask,  i ) 表示当前状态,0/1分别表示对应宝藏未拿与拿,i表示最后一个拿的i宝藏.

转移方程:

    dp( mask, j ) = Min{  dp( mask^(1<<j) , i ) + cost( i, j ) } , 其中 cost(i,j)表示从I到J得最小花费.

初始化, dp( 1<<i, i ) =  Min{ cost( i, 边界 ) }  

我的做法是 跑了K次SPFA,存储到数组 dist( i, x, y ), 表示从第i个宝藏出发到达点(x,y)的最短距离。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int MASK = (1<<13) + 10;
const int N = 210;
const int inf = 0x3f3f3f3f;
int dis[15][N][N];
bool vis[N][N];

int dp[MASK][15];
int n, m, K;
int mp[N][N], cost[15];
int dir[4][2] = {
{-1,0},{1,0},{0,-1},{0,1}
};
bool legal(int x,int y){
    if( x>=0 && x<n && y>=0 && y<m )
        return true;
    return false;
}
struct Point{
    int x,y;
    Point(){}
    Point(int _x,int _y):x(_x),y(_y){}
}p[15];
void init(){
    for(int i = 0; i < K; i++){
        queue< Point > Q;
        memset(vis,0,sizeof(vis));
        memset( dis[i], 0x3f, sizeof(dis[i]));
        dis[i][ p[i].x ][ p[i].y ] = 0;
        Q.push( Point(p[i].x, p[i].y) );
        vis[ p[i].x ][ p[i].y ] = true;
        while( !Q.empty() ){
            Point now = Q.front(); Q.pop();
            int x = now.x, y = now.y;
            vis[x][y] = false;
            for(int j = 0; j < 4; j++){
                int x1 = x+dir[j][0], y1 = y+dir[j][1];
                if( legal(x1,y1) && (mp[x1][y1]!=inf) && (dis[i][x1][y1] > dis[i][x][y] + mp[x1][y1]) ){
                    dis[i][x1][y1] = dis[i][x][y] + mp[x1][y1];
                    if( !vis[x1][y1] )
                        Q.push( Point(x1,y1) ), vis[x1][y1] = true;
                }
            }
        }
    }
    for(int i = 0; i < K; i++){
        cost[i] = inf;
        for(int row = 0; row < n; row++)
            cost[i] = min( cost[i], min(dis[i][row][0], dis[i][row][m-1]) );
        for(int col = 0; col < m; col++)
            cost[i] = min( cost[i], min(dis[i][0][col], dis[i][n-1][col]) );
    }
}
void solve(){
    memset( dp, 0x3f, sizeof(dp) );
    for(int i = 0; i < K; i++)
        dp[1<<i][i] = cost[i] + mp[ p[i].x ][ p[i].y ];
    int Mask = 1<<K;
    for(int mask = 1; mask < Mask; mask++ ){
        for(int i = 0; i < K; i++){
            for(int j = 0; j < K; j++){
                if( (mask&(1<<i)) && (mask&(1<<j)) && (i!=j) ){
                    if( dp[mask^(1<<j)][i] < inf )
                        dp[mask][j] = min( dp[mask][j], dp[mask^(1<<j)][i] + dis[i][ p[j].x ][ p[j].y ] );
                }
            }
        }
    }
    int res = inf;
    for(int i = 0; i < K; i++){
        res = min( res, dp[Mask-1][i] + cost[i] );
    }
    if( res < inf ) printf("%d\n", res );
    else printf("0\n");
}
int main(){
    int _;
    scanf("%d", &_);
    while( _-- ){
        scanf("%d%d",&n,&m);
        for(int i = 0; i < n; i++){
            for(int j = 0; j < m; j++){
                scanf("%d", &mp[i][j]);
                if( mp[i][j] == -1 )
                    mp[i][j] = inf;
            }
        }
        scanf("%d",&K);
        int a,b;
        for(int i = 0; i < K; i++){
            scanf("%d%d",&a,&b);
            p[i] = Point(a,b);
        }
        init();
        solve();
    }
    return 0;
}
View Code

 

 

G. Travel_in_Time

题目描述要看清楚,

重点: 当前访问顶点u, 下一个顶点v, 需要满足条件 val[u] < val[v] .

然后就是用Floyd处理任意两点的最短距离,可以看成是经过但不访问的花费。然后之后的dp[u][T]过程就看做是必须访问u点。

那么还有个问题是,起点S,E不一定要访问,所以需要虚拟一个起点和一个终点。然后随便搞搞就好了。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<algorithm>
using namespace std;
const int N = 110;
const int M = 310;
const int inf = 0x3f3f3f3f;

typedef pair<int,int> point;
#define MIN(a,b) (a)<(b)?(a):(b)
#define MAX(a,b) (a)>(b)?(a):(b)
#define min MIN
#define max MAX
int dis[N][M];
int n, m, T, S, E;
int cost[N], val[N];
int mp[N][N];
bool vis[N][M];

void solve(){
    memset(dis,0,sizeof(dis));
    memset(vis,0,sizeof(vis));
    vis[0][0] = true;
    queue< point > Q;
    Q.push( make_pair(0,0) );
    while( !Q.empty() ){
        point now = Q.front(); Q.pop();
        int u = now.first, t = now.second;
        vis[u][t] = false;
        for(int v = 0; v < n; v++){
            if( v == u ) continue;
            if( mp[u][v] < inf ){
                int tn = t + mp[u][v] + cost[v];
                if( (tn <= T) && (dis[v][tn] < dis[u][t] + val[v]) ){
                    if( (v == n-1) || (val[v] > val[u]) ){
                        dis[v][tn] = dis[u][t] + val[v];
                        if( !vis[v][tn] ) // val[v] must greate than zero.
                            Q.push( make_pair(v,tn) ), vis[v][tn] = true;
                    }
                }
            }
        }
    }
    int res = 0;
    for(int t = 0; t <= T; t++ ){
        res = max( res, max(dis[E][t],dis[n-1][t]) );
    }
    printf("%d\n", res);
}

int main(){
    freopen("Travel_in_Time.in","r",stdin);
    freopen("test.out","w",stdout);
    int _;
    scanf("%d",&_);
    for(int Case = 1; Case <= _; Case++ ){
        scanf("%d%d%d%d%d",&n,&m,&T,&S,&E);
        S++; E++;
        memset(mp,0x3f,sizeof(mp));
        for(int i = 1; i <= n; i++)
            scanf("%d", &cost[i]);
        for(int i = 1; i <= n; i++)
            scanf("%d", &val[i]);
        int a, b, c;
        for(int i = 0; i < m; i++){
            scanf("%d%d%d",&a,&b,&c);
            a++; b++;
            mp[a][b]=mp[b][a]=min( mp[a][b],c );
        }
        // Floyd
        for(int k = 1; k <= n; k++ )
        for(int i = 1; i <= n; i++ )
        for(int j = 1; j <= n; j++ )
            mp[i][j] = min( mp[i][j], mp[i][k] + mp[k][j] );
        // create virtual point of n;
        for(int i = 1; i <= n; i++){
            if( mp[E][i] < inf )
                mp[i][n+1] = mp[E][i];
            if( mp[S][i] < inf )
                mp[0][i] = mp[S][i];
        }
        mp[0][S] = 0; mp[E][n+1] = 0;
        cost[0] = 0; val[0] = -1;
        cost[n+1] = 0; val[n+1] = 0;
        n += 2;

        printf("Case #%d:\n", Case);
        solve();
    }
    return 0;
}
/*
1
4 4 0 0 3
1 1 1 1
5 7 9 12
0 1 1
1 3 1
0 2 1
2 3 1
*/
View Code

 

H.Bottles Arrangement

证明比较费力, 比赛过程猜结论感觉比较靠谱.

令 n = 2*L+1,  假定存在一行i, 且 A( i, L+1 ) = m.

考虑,  A( i, L ) 与 A( i, L+2 ) ,若A(i, L) = m,

则因为 相邻之差绝对值小于等于1, 就有

A(i,L-1) >= m-1, A(i, L-2) >= m-2, ..., A(i, 1) >= m-L+1

A(i,L+2) >= m-1, A(i, L+3) >= m-2, ..., A(i,2L+1) >= m-L

求和得出 \sum { A(i, j) } >= (2*L+1)*M - L*L = N*M - L*L

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;

typedef long long LL;

int main(){
    int m, n;
    while( scanf("%d%d",&m,&n) != EOF ){
        int l = n/2;
        printf("%d\n", n*m-l*l );
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/yefeng1627/archive/2013/06/05/3120104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值