洛谷 P3175 [HAOI2015]按位或

题目分析

与hdu4336 Card Collector相似,使用min-max容斥。

\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间。

\(\min(S)\)表示集合\(S\)中最初一位出现的期望时间。

由min-max容斥可得:

\(\max(T)=\sum\limits_{S \subseteq T}(-1)^{|T|-1}\min(S)\)

考虑求每一个\(\min(S)\)

一个很显然的暴力代码:

    for(int i=0;i<(1<<n);i++){
        double tot=0;
        for(int j=0;j<(1<<n);j++)if(i&j)tot+=p[j];
        Min[i]=tot; 
    }

我们考虑对于每一个集合\(S\),实质上只有与它没有交集的数对它没有贡献。

那么我们可以用总贡献减去与它没有交集的数的贡献。

即对于每一个数,只需要对它的补集的子集全部减去它的贡献即可。

这个很显然能够\(O(nlogn)\)计算出来。

那么就做完啦。

#include <bits/stdc++.h>
using namespace std;
int n;
double p[(1<<20)+5],a[25];
int main(){
    scanf("%d",&n);
    for(int i=0;i<(1<<n);i++){
        double x;
        scanf("%lf",&x);
        p[((1<<n)-1)^i]+=x;
        for(int j=0;j<n;j++)
            if(i&(1<<j))a[j]+=x;
    }
    for(int i=0;i<n;i++)if(!a[i]){puts("INF");return 0;}
    for(int j=0;j<n;j++)
        for(int i=0;i<(1<<n);i++)
            if(i&(1<<j))p[i^(1<<j)]+=p[i];
    for(int i=0;i<(1<<n);i++)p[i]=1-p[i];
    double ans=0;
    for(int i=1;i<(1<<n);i++){
        int f=(__builtin_popcount(i)&1)?1:-1;
        ans+=f/p[i];
    }
    cout<<fixed<<setprecision(7)<<ans<<"\n";
}

转载于:https://www.cnblogs.com/Trrui/p/9990032.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值