python推导式
1:推导式的分类
python共有三种推导式:列表推导式、集合推导式、字典推导式
1.1:列表推导式--使用[ ]生成列表
基本格式:
variable = [out_exp_res for out_exp in input_list if out_exp==2]
out_exp_res: 列表生成元素表达式,可以是有返回值的函数。
for out_exp in input_list: 迭代input_list将out_exp传入out_exp_res表达式中。
if out_exp == 2: 根据条件过滤哪些值可以。
列一:
multiples = [i for i in range(30) if i % 3 is 0]
print(multiples)
# Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
列二:
def squared(x):
return x*x
multiples = [squared(i) for i in range(30) if i % 3 is 0]
print multiples
# Output: [0, 9, 36, 81, 144, 225, 324, 441, 576, 729]
1.1.2、使用()生成generator
将列表推导式的[]改成()即可得到生成器
multiples = (i for i in range(30) if i % 3 is 0)
print(type(multiples))
# Output: <type 'generator'>
1.2:集合推导式
跟列表推导式也是类似的。 唯一的区别在于它使用大括号{}。
列一:
squared = {x**2 for x in [1, 1, 2]}
Output: set([1, 4])
1.3:字典推导式
字典推导和列表推导的使用方法是类似的,只不中括号该改成大括号。直接举例说明:
例子一:大小写key合并
mcase = {'a': 10, 'b': 34, 'A': 7, 'Z': 3}
mcase_frequency = {
k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)
for k in mcase.keys()
if k.lower() in ['a','b']
}
print mcase_frequency
# Output: {'a': 17, 'b': 34}
例子二:快速更换key和value
mcase = {'a': 10, 'b': 34}
mcase_frequency = {v: k for k, v in mcase.items()}
print mcase_frequency
# Output: {10: 'a', 34: 'b'}
example1 = {'a':3,'b':4,'A':5,'B':6}
print({k.lower():example1.get(k.lower(),0)+example1.get(k.upper(),0) for k in example1.keys() if k.lower() in ['a','b']})
2:案例
2.1 案例1--取出名字大于3的人员
L = ['zhangsan','lisi','zenghua','san','lishi']
# 取出列表中名字大于3的人员
# 方法一 for循环
for name in L:
if len(name)>3:
print(name)
# 方法二 列表推导式
print([name for name in L if len(name)>3])
2.2 案例2--求(x,y)、其中x是0-5之间的偶数、y是0-5之间的奇数
print([(x,y) for x in range(6) if x%2 == 0 for y in range(6) if y%2==1])
2.3 案例3--求M中369组成的列表
M = [[1,2,3],[4,5,6],[7,8,9]]
print([row[2] for row in M])
2.4 案例3--求M中159组成的列表
print([M[i][i] for i in range(len(M))])