B+树的应用场景:主要用在传统的行数据库中,因为查询速度快。但是如有有大量的数据需要查询时就暴露出其弊端。
LSM树的应用场景:Hbase就是使用了LSM树。
主要的实现方式:写数据时,第一步,写到预写日志中,目的是防止数据在写入时丢失;
第二步,将数据放入到内存中。
第三步,当内存的大小超过指定值,会把内存中的数据写入到磁盘上。
需要注意一个关键点:磁盘的数据是有序的,这是利用预写日志和内存把随机写数据进行排序后写入,因此也能保证稳定的数据插入速率。
LSM的优点:能快速进行数据的合并和拆分。
知道hbase的存储形式,接下来讲下hbase为什么能快速的读写删除。
读功能:
读取内容的顺序是先到内存中去寻找,再到磁盘中查找。我们都清楚的一点是,磁盘的查询速度是非常慢的。
问题来了,为什么kafka和hbase的速度非常快的。
这个需要认识到磁盘的一些小知识。我们在查找数据时,首先是去磁盘寻道。这个才是最耗时的。
所以,使用Hbase的范围查询,假如有五个存储文件,最多也就进行五次的磁盘寻道。所以读功能的性能瓶颈也就得到了提升。
删除功能:
删除数据不是进行实质上的删除,也就是磁盘上仍然存在此条数据。只不过是对删除的数据打上了墓碑标记。利用墓碑标记,读数据会忽略此条数据。
当进行小文件合并时,才会进行实质上删除。