序列长\(n\),询问\(Q\)。
离线
莫队呀,由于众数不好删除,直接回滚莫队即可,时间复杂度\(o(n \sqrt n)\),空间$o(n) $。
在线
分块啊。
设块大小为T。
first
其实可以沿用回滚莫队思想,记录\([l,r]\)块里的数的\(cnt\),时间复杂度\(\displaystyle o({n^3 \over T^2}+ TQ)\),空间复杂度\(\displaystyle o({n^3 \over T^2})\)。T取\(n^{2 \over 3}\)最优。
second
略微优化,实际上询问时对于\([l,r]\)的块里数只需知道众数,然后对于边角上的数知道在询问区间出现次数即可。
预处理\([l,r]\)块的众数,时间复杂度$o(n \sqrt n) $。
询问一个数在区间出现次数 可以记录前缀和,总时空复杂度均为\(o(n \sqrt n)\),也可以用vector存同类数出现位置,在vector上二分,时间复杂度\(o(n \sqrt {nlog(n)})\),空间复杂度\(o(n)\)。
third
序列中每个数记录在vector里出现的位置\(X\)。
当前的答案为ANS,
对于左端边角,若vector中下标ANS+X的位置 \(\leq r\),那么++ANS。
对于右端边角,若vector中下标ANS-X的位置 \(\geq l\),那么++ANS。
显然,ANS最多只会被增加\(2 \sqrt n\)次(ANS基于中间所有的整块的众数,最多只会多上 边角的数的数目)。
时间复杂度\(o(n \sqrt n)\),空间复杂度\(o(n)\)。
好像还有更好的科技...不会。
例: