[Codeforces Round #296 div2 D] Clique Problem 【线段树+DP】

题目链接:CF - R296 - d2 - D

 

题目大意

一个特殊的图,一些数轴上的点,每个点有一个坐标 X,有一个权值 W,两点 (i, j) 之间有边当且仅当 |Xi - Xj| >= Wi + Wj。

求这个图的最大团。

图的点数 n <= 10^5.

 

题目分析

两点之间右边满足 Xj - Xi >= Wi + Wj (Xi < Xj)       ==>     Xj  - Wj >= Xi + Wi (Xi < Xj)

按照坐标 x 从小到大将点排序。用 F[i] 表示前 i 个点的最大团大小。

那么 F[i] = max(F[k]) + 1      (k < i && (Xi - Wi >= Xk + Wk))

这个前缀最大值查询用线段树实现,然后求出的 F[i] 也要存入线段树的 Xi + Wi 处。

 

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

const int MaxN = 200000 + 5, MaxNode = 200000 * 32 + 15, INF = 1000000000;

int n, Index, Root, Ans;
int T[MaxNode], Son[MaxNode][2];

struct ES
{
	int x, w;
	bool operator < (const ES b) const
	{
		return x < b.x;
	}
} E[MaxN];

inline int gmax(int a, int b) {return a > b ? a : b;}

void Set_Max(int &x, int s, int t, int Pos, int Num) 
{
	if (x == 0) x = ++Index;
	T[x] = gmax(T[x], Num);
	if (s == t) return;
	int m = (s + t) >> 1;
	if (Pos <= m) Set_Max(Son[x][0], s, m, Pos, Num);
	else Set_Max(Son[x][1], m + 1, t, Pos, Num);
}

int Get_Max(int x, int s, int t, int r)
{
	if (r >= t) return T[x];
	int m = (s + t) >> 1;
	int ret;
	ret = Get_Max(Son[x][0], s, m, r);
	if (r >= m + 1) ret = gmax(ret, Get_Max(Son[x][1], m + 1, t, r));
	return ret;
}

int main()
{
	scanf("%d", &n);
	for (int i = 1; i <= n; ++i)
		scanf("%d%d", &E[i].x, &E[i].w);
	sort(E + 1, E + n + 1);
	Ans = 0;
	Index = 0;
	int t, Fi;
	for (int i = 1; i <= n; ++i)
	{
		t = E[i].x - E[i].w;
		if (i != 1) Fi = Get_Max(Root, -INF, INF, t) + 1;
		else Fi = 1;
		if (Fi > Ans) Ans = Fi;
		t = E[i].x + E[i].w;
		Set_Max(Root, -INF, INF, t, Fi); 
	}
	printf("%d\n", Ans);
	return 0;
}

  

转载于:https://www.cnblogs.com/JoeFan/p/4347465.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值