在这个版本安装之前,要先装好opencv,openmpi等。
下载地址:https://github.com/yjxiong/caffe.git
我的opencv是2.4.12版本
编译是用了:
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -DCUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so -D CUDA_ARCH_BIN=5.2 -D CUDA_ARCH_PTX="" -D WITH_CUDA=ON -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D ENABLE_FAST_MATH=1 -D CUDA_FAST_MATH=1 -D WITH_CUBLAS=1 -D WITH_NVCUVID:BOOL="1" .
caffe的编译是:
cmake -DUSE_MPI=ON -DMPI_CXX_COMPILER=/data/dog123/openmpi/bin/mpicxx ..
----------------------------------------------------------------------------------------
(还是写完整些比较好)
到你要存放是目录下,使用命名(git clone https://github.com/yjxiong/caffe.git)下载软件包。
将Makefile.config.example 另存一份名为Makefile.config
修改Makefile.config,最终的样子如下:
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
MATLAB_DIR := /usr/local/MATLAB/R2014a
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
(红色部分是要核对下的)
然后在caffe目录下执行如下命令:
创建build文件夹并进入:
mkdir build
cd build
编译:
cmake -DUSE_MPI=ON -DMPI_CXX_COMPILER=/data/dog123/openmpi/bin/mpicxx ..
编译的结果是:
og@asus:/data/dog123/caffe/build$ cmake -DUSE_MPI=ON -DMPI_CXX_COMPILER=/data/dog123/openmpi/bin/mpicxx ..
-- The C compiler identification is GNU 4.7.3
-- The CXX compiler identification is GNU 4.7.3
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Boost version: 1.64.0
-- Found the following Boost libraries:
-- system
-- thread
-- Looking for include file pthread.h
-- Looking for include file pthread.h - found
-- Looking for pthread_create
-- Looking for pthread_create - not found
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found GFlags: /usr/include
-- Found gflags (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/libgflags.so)
-- Found Glog: /usr/include
-- Found glog (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/libglog.so)
-- Found PROTOBUF: /usr/lib/x86_64-linux-gnu/libprotobuf.so
-- Found PROTOBUF Compiler: /usr/bin/protoc
-- Found HDF5: /usr/lib/x86_64-linux-gnu/libhdf5_hl.so;/usr/lib/x86_64-linux-gnu/libhdf5.so
-- Found LMDB: /usr/include
-- Found lmdb (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/liblmdb.so)
-- Found LevelDB: /usr/include
-- Found LevelDB (include: /usr/include, library: /usr/lib/x86_64-linux-gnu/libleveldb.so)
-- Found Snappy: /usr/include
-- Found Snappy (include: /usr/include, library: /usr/lib/libsnappy.so)
-- CUDA detected: 8.0
-- Found cuDNN (include: /usr/local/cuda/include, library: /usr/local/cuda/lib64/libcudnn.so)
-- Added CUDA NVCC flags for: sm_52
-- OpenCV found (/usr/local/share/OpenCV)
-- Found Atlas: /usr/include
-- Found Atlas (include: /usr/include, library: /usr/lib/libatlas.so)
-- Found PythonInterp: /usr/bin/python2.7 (found suitable version "2.7.6", minimum required is "2.7")
-- Found PythonLibs: /usr/lib/x86_64-linux-gnu/libpython2.7.so (found suitable version "2.7.6", minimum required is "2.7")
-- Found NumPy: /usr/local/lib/python2.7/dist-packages/numpy/core/include (found suitable version "1.12.1", minimum required is "1.7.1")
-- NumPy ver. 1.12.1 found (include: /usr/local/lib/python2.7/dist-packages/numpy/core/include)
-- Boost version: 1.64.0
-- Found the following Boost libraries:
-- python
-- Found Doxygen: /usr/bin/doxygen (found version "1.8.6")
-- Found MPI_C: /data/dog123/openmpi/lib/libmpi.so
-- Found MPI_CXX: /data/dog123/openmpi/lib/libmpi.so
-- Detected Doxygen OUTPUT_DIRECTORY: ./doxygen/
-- Found Git: /usr/bin/git (found version "1.9.1")
--
-- ******************* Caffe Configuration Summary *******************
-- General:
-- Version : <TODO> (Caffe doesn't declare its version in headers)
-- Git : v0.9999-1628-gfd7458e
-- System : Linux
-- C++ compiler : /usr/bin/c++
-- Release CXX flags : -O3 -DNDEBUG -fPIC -Wall -Wno-sign-compare -Wno-uninitialized
-- Debug CXX flags : -g -fPIC -Wall -Wno-sign-compare -Wno-uninitialized
-- Build type : Release
--
-- BUILD_SHARED_LIBS : ON
-- BUILD_python : ON
-- BUILD_matlab : OFF
-- BUILD_docs : ON
-- CPU_ONLY : OFF
--
-- Dependencies:
-- BLAS : Yes (Atlas)
-- Boost : Yes (ver. 1.64)
-- glog : Yes
-- gflags : Yes
-- protobuf : Yes (ver. 2.5.0)
-- lmdb : Yes (ver. 0.9.10)
-- Snappy : Yes (ver. 1.1.0)
-- LevelDB : Yes (ver. 1.15)
-- OpenCV : Yes (ver. 2.4.12)
-- CUDA : Yes (ver. 8.0)
--
-- NVIDIA CUDA:
-- Target GPU(s) : Auto
-- GPU arch(s) : sm_52
-- cuDNN : Yes
--
-- Python:
-- Interpreter : /usr/bin/python2.7 (ver. 2.7.6)
-- Libraries : /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.6)
-- NumPy : /usr/local/lib/python2.7/dist-packages/numpy/core/include (ver 1.12.1)
--
-- Documentaion:
-- Doxygen : /usr/bin/doxygen (1.8.6)
-- config_file : /data/dog123/caffe/.Doxyfile
--
-- Install:
-- Install path : /data/dog123/caffe/build/install
--
-- Configuring done
-- Generating done
-- Build files have been written to: /data/dog123/caffe/build
dog@asus:/data/dog123/caffe/build$
安装:
make all -j8 (j8 是为了加快安装速度,可以去掉)
sudo make install (注意 sudo权限)
最后就是测试:
make runtest (我这里有2个test不过,但是我还没找到原因(因为没看到错误在哪,都在输出的前面覆盖了),因为装好多遍都有2个不过,所以先将就。也就是这样,感觉自己跟一个炸弹绑在一起,我不知道它什么时候会不爽然后炸我1炸,哈哈哈哈哈)
最后就是python和matlab接口。
这2者都是caffe装之前就装好了的。
编译python接口:
添加环境变量:
vi ~/.bashrc
写入:
export PYTHONPATH=/your/path/caffe/python:$PYTHONPATH
保存,退出,执行sourc使文件生效:
source ~/.bashrc
接着在caffe目录下:
sudo make pycaffe
如果报错,点这里。一般再执行一遍上面命令即可。
最后就是:输入命令:
python
import caffe
没报错就是成功了。
编译matlab接口:
同理,在~/.bashrc中添加环境变量:
export PATH=$PATH:/usr/local/MATLAB/R2014a/bin
然后在caffe目录下执行:
sudo make matcaffe
没报错的话,就用下面命令测试下:
make matcaffe
如果报错,就点这里
嗯,就这些。