CodeForces 339D————线段树之单点修改

D. Xenia and Bit Operations
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Xenia the beginner programmer has a sequence a, consisting of 2n non-negative integers: a1, a2, ..., a2n. Xenia is currently studying bit operations. To better understand how they work, Xenia decided to calculate some value v for a.

Namely, it takes several iterations to calculate value v. At the first iteration, Xenia writes a new sequence a1 or a2, a3 or a4, ..., a2n - 1 or a2n, consisting of 2n - 1 elements. In other words, she writes down the bit-wise OR of adjacent elements of sequence a. At the second iteration, Xenia writes the bitwise exclusive OR of adjacent elements of the sequence obtained after the first iteration. At the third iteration Xenia writes the bitwise OR of the adjacent elements of the sequence obtained after the second iteration. And so on; the operations of bitwise exclusive OR and bitwise OR alternate. In the end, she obtains a sequence consisting of one element, and that element is v.

Let's consider an example. Suppose that sequence a = (1, 2, 3, 4). Then let's write down all the transformations (1, 2, 3, 4)  → (1 or 2 = 3, 3 or 4 = 7)  →  (3 xor 7 = 4). The result is v = 4.

You are given Xenia's initial sequence. But to calculate value v for a given sequence would be too easy, so you are given additional mqueries. Each query is a pair of integers p, b. Query p, b means that you need to perform the assignment ap = b. After each query, you need to print the new value v for the new sequence a.

Input

The first line contains two integers n and m (1 ≤ n ≤ 17, 1 ≤ m ≤ 105). The next line contains 2n integers a1, a2, ..., a2n (0 ≤ ai < 230). Each of the next m lines contains queries. The i-th line contains integers pi, bi (1 ≤ pi ≤ 2n, 0 ≤ bi < 230) — the i-th query.

Output

Print m integers — the i-th integer denotes value v for sequence a after the i-th query.

Sample test(s)
input
2 4
1 6 3 5
1 4
3 4
1 2
1 2
output
1
3
3
3

这个问题的描述就强烈的暗示我们用线段树来做了。

不过这个和普通的单点修改略有不同,因为有两种不同的操作,or和xor。

我们所需要判断的就是什么时候用or、xor。

有一点不难发现,or和xor这两个操作一定是交替进行的,这是第一点。

于是我们可以传递一个参数,通过判断这个参数的正负或者奇偶等来决定进行哪一种操作。

这一点很好想到。

但是同样的,我们应该有一个疑问,那就是第一次传入的这个judge参数在满足什么情况下是or(xor)?

也就是说,我们必须确定这段区间是先or还是先xor的。

通过一些分析我们发现:

当题目中的n是偶数的时候,例如n = 2(总数为2^2)

[1,2,3,4]

那么操作是如下图所示:

 

当题目中的n是奇数的时候,例如n = 1。(总数为2^1)

[1,2]

那么直接就是1 or 2

以上两种操作顺序是不同的,那么就可以先对n进行一下奇偶性的判断,然后觉得传入的参数是什么。

附AC代码,其中关键地方有注释,应该可以看懂。

<span style="font-family:Microsoft YaHei;font-size:14px;">#include <stdio.h>
#include <string.h>
#define maxn 1<<17

typedef struct{
	int left,right,mid;
	int value;
}Tree;

Tree tree[maxn << 2];
int num[maxn+1];
int N;
void Build(int root,int left,int right,int judge) 
{
	tree[root].left = left;
	tree[root].right = right;
	tree[root].mid = (tree[root].left + tree[root].right) >> 1;
	if(left == right){//最后一个叶节点不做or和xor的处理,递归出口 
		tree[root].value = num[left];
		return ;
	}
	int mid = (left + right) >> 1;
	//-1,1交替进行代表了or和xor的交替进行 
	Build(root << 1,left,mid,-judge);
	Build(root << 1|1,mid+1,right,-judge);
	if(judge == 1)//judge == 1,xor操作 
		tree[root].value = (tree[root<<1].value ^ tree[root<<1|1].value);
	else//否则做or操作 
		tree[root].value = (tree[root<<1].value | tree[root<<1|1].value);
}
void Update(int root,int index,int value,int judge)
{
	if(tree[root].left == tree[root].right && tree[root].right == index){
		tree[root].value = value;
		return ;
	}
	if(index <= tree[root].mid)
		Update(root<<1,index,value,-judge);
	else if(tree[root].mid < index)
		Update(root<<1|1,index,value,-judge);
	if(judge == 1)
		tree[root].value = (tree[root<<1].value ^ tree[root<<1|1].value);
	else
		tree[root].value = (tree[root<<1].value | tree[root<<1|1].value);
}
int main()
{
	int n,m;
	while(scanf("%d%d",&n,&m) != EOF){
		int pos,value,judge;
		memset(tree,0,sizeof(tree));
		memset(num,0,sizeof(num));
		int N = 1 << n;//数据总个数 
		for(int i = 1 ; i <= N ; ++i )
			scanf("%d",&num[i]);
		if(n % 2 == 1)//奇偶不同策略不同 
			judge = -1;
		else
			judge = 1;
		Build(1,1,N,judge);
		while(m--){
			scanf("%d%d",&pos,&value);
			Update(1,pos,value,judge);
			printf("%d\n",tree[1].value);
		} 
	}
}</span>






转载于:https://www.cnblogs.com/sixdaycoder/p/4348358.html

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值