BZOJ 3127 [Usaco2013 Open]Yin and Yang(树点分治)

 

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=3127

 

【题目大意】

  给出一棵01边权树,求存在多少条路径,使得路径上0和1的数量相同,
  并且在路劲中能找到至少一个中断点,使得分为两段01数量相同的路径

 

【题解】

  我们对这棵树进行点分治,每次只考虑经过重心的路径,
  我们将路径权值和分出现一次和出现多次进行统计,如果出现一次,
  则在之前出现了多次的权值数组中查相反数,如果出现多次,
  则是一次和多次的权值数组的和,权值和为0的特殊情况则另需考虑以重心为端点的路径。
  每个子树先计算答案,然后统计入权值数组。

 

【代码】

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
const int N=200020; 
vector<int> v[N],e[N];
typedef long long LL;
const int base=100010;
int n,cnt,root,sum,nowT=0;
int mark[N],T1[N],T2[N],size[N],d[N],dp[N],t[N],vis[N];
LL S1[N],S2[N],ans;
void getroot(int x,int fx){
    size[x]=1; dp[x]=0;
    for(int i=0;i<v[x].size();i++){
        int y=v[x][i];
        if(!vis[y]&&y!=fx){
            getroot(y,x);
            size[x]+=size[y];
            dp[x]=max(dp[x],size[y]);
        }
    }dp[x]=max(dp[x],sum-size[x]);
    if(dp[x]<dp[root])root=x;
}
void getdeep(int x,int fx){
    if(mark[base+d[x]]){  
        mark[base+d[x]]++;
        if(!d[x])ans++;
        if(T2[base+d[x]]==root)S2[base+d[x]]++;
        else T2[base+d[x]]=root,S2[base+d[x]]=1;
    }else{
        mark[base+d[x]]++;
        if(T1[base+d[x]]==root)S1[base+d[x]]++;
        else T1[base+d[x]]=root,S1[base+d[x]]=1;
    } 
    for(int i=0;i<v[x].size();i++){
        int y=v[x][i],w=e[x][i];
        if(!vis[y]&&y!=fx){
            d[y]=d[x]+w;
            getdeep(y,x);
        }
    }mark[base+d[x]]--;
}
void caldeep(int x,int fx){
    if(mark[base-d[x]]){
    	mark[base-d[x]]++;
        if(T2[base-d[x]]==root)ans+=S2[base-d[x]];
        else T2[base-d[x]]=root,S2[base-d[x]]=0;
        if(T1[base-d[x]]==root)ans+=S1[base-d[x]];
        else T1[base-d[x]]=root,S1[base-d[x]]=0;
    }else{
        mark[base-d[x]]++;
        if(T2[base-d[x]]==root)ans+=S2[base-d[x]];
        else T2[base-d[x]]=root,S2[base-d[x]]=0;
        if(T1[base-d[x]]==root){
        	if(!d[x])ans+=S1[base-d[x]];
        }else T1[base-d[x]]=root,S1[base-d[x]]=0;
    }
    for(int i=0;i<v[x].size();i++){
        int y=v[x][i],w=e[x][i];
        if(!vis[y]&&y!=fx){
            d[y]=d[x]+w;
            caldeep(y,x);
        }
    }mark[base-d[x]]--;
}
void cal(int x){
    for(int i=0;i<v[x].size();i++){
        int y=v[x][i],w=e[x][i];
        if(!vis[y]){
            d[y]=w;
            caldeep(y,x);
            getdeep(y,x);
        }
    }
}
void solve(int x){
    cal(x); vis[x]=1;
    for(int i=0;i<v[x].size();i++){
        int y=v[x][i];
        if(!vis[y]){
            root=0;sum=size[y];
            getroot(y,0);
            solve(root);
        }
    }
}
int main(){
    while(~scanf("%d",&n)){
        ans=0;
        for(int i=1;i<=n;i++)v[i].clear(),e[i].clear();
        for(int i=1;i<n;i++){
            int x,y,w;
            scanf("%d%d%d",&x,&y,&w); 
            v[x].push_back(y);
            v[y].push_back(x);
            e[x].push_back(w?1:-1);
            e[y].push_back(w?1:-1);
        }memset(vis,0,sizeof(vis)); 
        dp[0]=sum=n;
        getroot(1,0);
        solve(root);
        printf("%lld\n",ans);
    }return 0;
}

转载于:https://www.cnblogs.com/forever97/p/bzoj3127.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值