CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i)...

 

题目意思:

给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

 

题目分析:

首先如果你可以熟悉的使用树形dp的话 , 可以很快的意识的先从1号点开始dfs一遍,然后通过一些奇怪的方式,再dfs一遍得到其他点的贡献。无所以我们需要找到一个递推式是满足我选择其他号码为根时候,可以很快的得到答案 。 现在假设有两个节点v , fa ; v 是 fa 的儿子节点 , 根据dp的性质 与dfs的遍历顺序, 如果已经的遍历到 dp[v] 了 , 那dp[fa] 就一定是最优的答案 , 那显然 有式子 dp[v] = dp[fa]-sum[v]  + sum[1]-sum[v] ; 

为什么这样呢?  这个很好想 , 如果v是根的话 ,  sum[1]-sum[v] 就是计算的是(不是v子树)的贡献 , dp[fa]-sum[v] , 应为对dp[fa] 来说 结果已经是有sum[v] 的值了 , 这就是多的部分 ; 

以上是自己的奇思妙想;

这篇博客解释的很好呀,大牛来的

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2 * 1e5 + 100;

ll dp[maxn], sum[maxn], head[maxn];
int n, top;
ll ans;
struct node {                      //链式前向星存树,可以更换为其他的存储方式
    int v, next;
}edge[maxn * 2];

inline void add (int u, int v)     //建边
{
    edge[top].v = v;
    edge[top].next = head[u];
    head[u] = top++;
}

void dfs(int u , int fa) //求出根为1的时候的dp
{
    for(int i=head[u] ; i!=-1 ; i=edge[i].next)
    {
        int v=edge[i].v;
        if(v!=fa)
        {
            dfs(v,u);
            sum[u]+=sum[v];
            dp[u] +=sum[v]+dp[v];
        }
    }
}
void solve(int u , int fa)
{
    if(u!=1)
    dp[u]=dp[fa]-sum[u]+sum[1]-sum[u];
    for(int i=head[u] ; i!=-1 ; i=edge[i].next)
    {
        int v=edge[i].v;
        if(v!=fa)
        solve(v,u);
    }
    ans=max(ans,dp[u]);
}
int main()
{
    int n;
    scanf("%d",&n);
    memset(head,-1,sizeof(head));
    memset(dp,0,sizeof(dp));
    for(int i=1 ; i<=n ; i++)
    {
        scanf("%I64d",&sum[i]);
    }
    int u,v;
    for(int i=1 ; i<=n-1 ; i++)
    {
        scanf("%d%d",&u,&v);
        add(u,v);
        add(v,u);
    }
    dfs(1,0);
    solve(1,0);
    printf("%I64d\n",ans);
}
View Code

 



转载于:https://www.cnblogs.com/shuaihui520/p/10164387.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值