【BZOJ4753】最佳团体(分数规划,动态规划)

【BZOJ4753】最佳团体(分数规划,动态规划)

题面

BZOJ

Description

JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号。方便起见,JYY的编号是0号。每个候选人都由一位
编号比他小的候选人Ri推荐。如果Ri=0则说明这个候选人是JYY自己看上的。为了保证团队的和谐,JYY需要保证,
如果招募了候选人i,那么候选人Ri"也一定需要在团队中。当然了,JYY自己总是在团队里的。每一个候选人都有
一个战斗值Pi",也有一个招募费用Si"。JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队。
也就是,这K个被JYY选择的候选人的总战斗值与总招募总费用的比值最大。

Input

输入一行包含两个正整数K和N。
接下来N行,其中第i行包含3个整数Si,Pi,Ri表示候选人i的招募费用,战斗值和推荐人编号。
对于100%的数据满足1≤K≤N≤2500,0<"Si,Pi"≤10^4,0≤Ri<i

Output

输出一行一个实数,表示最佳比值。答案保留三位小数。

Sample Input

1 2

1000 1 0

1 1000 1

Sample Output

0.001

题解

典型的分数规划
二分答案后将点权转换为\(P-mid·S\)
然后做一个树上背包就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 3000
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n,K,P[MAX],S[MAX],fa[MAX];
struct Line{int v,next;}e[MAX];
int h[MAX],cnt=1,size[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
double v[MAX],f[MAX][MAX],tmp[MAX];
void Merge(int x,int y)
{
    for(int i=0;i<=K+1;++i)tmp[i]=-1e18;
    for(int i=1;i<=size[x];++i)
        for(int j=1;j<=min(K+1-i,size[y]);++j)
            tmp[i+j]=max(f[x][i]+f[y][j],tmp[i+j]);
    for(int i=0;i<=K+1;++i)f[x][i]=max(f[x][i],tmp[i]);
}
void dfs(int u)
{
    f[u][1]=v[u];size[u]=1;
    for(int i=h[u];i;i=e[i].next)
        dfs(e[i].v),Merge(u,e[i].v),size[u]+=size[e[i].v];
}
bool check(double mid)
{
    //v[0]=-1e18;
    for(int i=0;i<=n;++i)
        for(int j=0;j<=K+1;++j)
            f[i][j]=-1e18;
    memset(size,0,sizeof(size));
    for(int i=1;i<=n;++i)v[i]=P[i]-mid*S[i];
    dfs(0);
    return f[0][K+1]>=0;
}
int main()
{
    K=read();n=read();
    for(int i=1;i<=n;++i)
    {
        S[i]=read();P[i]=read();
        fa[i]=read();Add(fa[i],i);
    }
    double l=0,r=1e6;
    while(r-l>1e-4)
    {
        double mid=(l+r)/2;
        if(check(mid))l=mid;
        else r=mid;
    }
    printf("%.3lf\n",l);
    return 0;
}

转载于:https://www.cnblogs.com/cjyyb/p/9083721.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值