1 互联网时代背景下大机遇,为什么用nosql
1.单机MySQL的美好年代
在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。
在那个时候,更多的都是静态网页,动态交互类型的网站不多。
上述架构下,我们来看看数据存储的瓶颈是什么?
1.数据量的总大小 一个机器放不下时
2.数据的索引(B+ Tree)一个机器的内存放不下时
3.访问量(读写混合)一个实例不能承受
如果满足了上述1 or 3个,进化......
2 .Memcached(缓存)+MySQL+垂直拆分
后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。
Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端
3. Mysql主从读写分离
由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。
4 .分表分库+水平拆分+mysql集群
在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。
同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但性能也不能很好满足互联网的要求,只是在高可靠性上提供了非常大的保证。
5 .MySQL的扩展性瓶颈
MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。
6 NoSQL是什么?
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
7. 能干嘛
(1)易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。
数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
(2)大数据量高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。
这得益于它的无关系性,数据库的结构简单。
一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,
在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,
是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了
(3)多样灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,
增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦
传统RDBMS VS NOSQL
RDBMS vs NoSQL
RDBMS
- 高度组织化结构化数据
- 结构化查询语言(SQL)
- 数据和关系都存储在单独的表中。
- 数据操纵语言,数据定义语言
- 严格的一致性
- 基础事务
NoSQL
- 代表着不仅仅是SQL
- 没有声明性查询语言
- 没有预定义的模式
-键 - 值对存储,列存储,文档存储,图形数据库
- 最终一致性,而非ACID属性
- 非结构化和不可预知的数据
- CAP定理
- 高性能,高可用性和可伸缩性
8.为什么用NoSQL
今天我们可以通过第三方平台(如:Google,Facebook等)可以很容易的访问和抓取数据。用户的个人信息,社交网络,地理位置,用户生成的数据和用户操作日志已经成倍的增加。我们如果要对这些用户数据进行挖掘,那SQL数据库已经不适合这些应用了, NoSQL数据库的发展也却能很好的处理这些大的数据。
9 去哪下
Redis,memcache,Mongdb
10. 怎么玩
KV,Cache,Persistence,.......
10. 3V+3高
(1)大数据时代的3V
海量Volume,多样Variety,实时Velocity
高并发,高可扩,高性能
NoSQL数据模型简介
以一个电商客户、订单、订购、地址模型来对比下关系型数据库和非关系型数据库
1.传统的关系型数据库你如何设计?
ER图(1:1/1:N/N:N,主外键等常见)
- nosql你如何设计
什么是BSON
BSON()是一种类json的一种二进制形式的存储格式,简称Binary JSON,
它和JSON一样,支持内嵌的文档对象和数组对象
给学生用BSon画出构建的数据模型
{
"customer":{
"id":1136,
"name":"Z3",
"billingAddress":[{"city":"beijing"}],
"orders":[
{
"id":17,
"customerId":1136,
"orderItems":[{"productId":27,"price":77.5,"productName":"thinking in java"}],
"shippingAddress":[{"city":"beijing"}]
"orderPayment":[{"ccinfo":"111-222-333","txnid":"asdfadcd334","billingAddress":{"city":"beijing"}}],
}
]
}
}
两者对比,问题和难点
为什么上述的情况可以用聚合模型来处理
高并发的操作是不太建议有关联查询的,互联网公司用冗余数据来避免关联查询
分布式事务是支持不了太多的并发的.
聚合模型
KV键值
,bson,
列族() 顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,
对针对某一列或者某几列的查询有非常大的IO优势。
图形
NoSQL数据库的四大分类
KV键值:典型介绍
新浪:BerkeleyDB+redis,美团:redis+tair,阿里、百度:memcache+redis
文档型数据库(bson格式比较多):典型介绍
CouchDB,MongoDB
MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。
MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。
列存储数据库
Cassandra, HBase
分布式文件系统
图关系数据库
它不是放图形的,放的是关系比如:朋友圈社交网络、广告推荐系统
社交网络,推荐系统等。专注于构建关系图谱
Neo4J, InfoGrid
在分布式数据库中CAP原理CAP+BASE
11. 传统的ACID分别是什么?
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
1、A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
2、C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
3、I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
4、D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
12. CAP
C:Consistency(强一致性)A:Availability(可用性)P:Partition tolerance(分区容错性)
CAP的3进2
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以
分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
=======================================================================================================================
C:强一致性 A:高可用性 P:分布式容忍性
CA 传统Oracle数据库
AP 大多数网站架构的选择
CP Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向
=======================================================================================================================
一致性与可用性的决择
对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地
数据库事务一致性需求
很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低, 有些场合对写一致性要求并不高。允许实现最终一致性。
数据库的写实时性和读实时性需求
对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比方说发一条消息之 后,过几秒乃至十几秒之后,我的订阅者才看到这条动态是完全可以接受的。
对复杂的SQL查询,特别是多表关联查询的需求
任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特别是SNS类型的网站,从需求以及产品设计角 度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
最多只能同时较好的满足两个。
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍必的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
BASE
BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案。
BASE其实是下面三个术语的缩写:
基本可用(Basically Available)
软状态(Soft state)
最终一致(Eventually consistent)
它的思想是通过让系统放松对某一时刻数据一致性的要求来换取系统整体伸缩性和性能上改观。为什么这么说呢,缘由就在于大型系统往往由于地域分布和极高性能的要求,不可能采用分布式事务来完成这些指标,要想获得这些指标,我们必须采用另外一种方式来完成,这里BASE就是解决这个问题的办法
分布式+集群简介
分布式系统
分布式系统(distributed system)
由多台计算机和通信的软件组件通过计算机网络连接(本地网络或广域网)组成。分布式系统是建立在网络之上的软件系统。正是因为软件的特性,所以分布式系统具有高度的内聚性和透明性。因此,网络和分布式系统之间的区别更多的在于高层软件(特别是操作系统),而不是硬件。分布式系统可以应用在在不同的平台上如:Pc、工作站、局域网和广域网上等。
简单来讲:
1分布式:不同的多台服务器上面部署不同的服务模块(工程),他们之间通过Rpc/Rmi之间通信和调用,对外提供服务和组内协作。
2集群:不同的多台服务器上面部署相同的服务模块,通过分布式调度软件进行统一的调度,对外提供服务和访问。
Redis
1.Redis:REmote DIctionary Server(远程字典服务器)
是完全开源免费的,用C语言编写的,遵守BSD协议,
是一个高性能的(key/value)分布式内存数据库,基于内存运行
并支持持久化的NoSQL数据库,是当前最热门的NoSql数据库之一,
也被人们称为数据结构服务器
2.Redis 与其他 key - value 缓存产品有以下三个特点
(1)Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用
(2)Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储
(3)Redis支持数据的备份,即master-slave模式的数据备份
2.能干吗?
内存存储和持久化:redis支持异步将内存中的数据写到硬盘上,同时不影响继续服务
取最新N个数据的操作,如:可以将最新的10条评论的ID放在Redis的List集合里面
模拟类似于HttpSession这种需要设定过期时间的功能
发布、订阅消息系统
定时器、计数器
3 去哪下
4 怎么玩
数据类型、基本操作和配置
持久化和复制,RDB/AOF
事务的控制
复制
......
- VMWare+VMTools千里之行始于足下
VMWare虚拟机的安装
CentOS或者RedHad5的安装
如何查看自己的linux是32位还是64位
getconf LONG_BIT
返回是多少就是几位
假如出现了不支持虚拟化的问题
我的笔记本cpu是64位的,操作系统也是64位的,问题应该如虚拟机右下角提示所说,
是“宿主机BIOS设置中的硬件虚拟化被禁用了。”
需要打开笔记本BIOS中的IVT对虚拟化的支持。
找到菜单“Security”–“System Security”,
将Virtualization Technology(VTx)和Virtualization Technology DirectedI/O(VTd)设置为 Enabled。
保存并退出BIOS设置,重启电脑,
VMTools的安装
设置共享目录
上述环境都OK后开始进行Redis的服务器安装配置
Redis的安装
Window 下安装
下载地址:https://github.com/dmajkic/redis/downloads
下载到的Redis支持32bit和64bit。根据自己实际情况选择,将64bit的内容cp到自定义盘符安装目录取名redis。 如 C:\reids
打开一个cmd窗口 使用cd命令切换目录到 C:\redis 运行 redis-server.exe redis.conf 。
如果想方便的话,可以把redis的路径加到系统的环境变量里,这样就省得再输路径了,后面的那个redis.conf可以省略,
如果省略,会启用默认的。输入之后,会显示如下界面:
这时候另启一个cmd窗口,原来的不要关闭,不然就无法访问服务端了。
切换到redis目录下运行 redis-cli.exe -h 127.0.0.1 -p 6379 。
设置键值对 set myKey abc
取出键值对 get myKey
由于企业里面做Redis开发,99%都是Linux版的运用和安装,
几乎不会涉及到Windows版,上一步的讲解只是为了知识的完整性,
Windows版不作为重点,同学可以下去自己玩,企业实战就认一个版:Linux
Linux版安装(https://blog.csdn.net/nininininiabc222/article/details/79587734)
下载获得redis-3.0.4.tar.gz后将它放入我们的Linux目录/opt
/opt目录下,解压命令:tar -zxvf redis-3.0.4.tar.gz
解压完成后出现文件夹:redis-3.0.4
进入目录:cd redis-3.0.4
在redis-3.0.4目录下执行make命令
运行make命令时故意出现的错误解析:
(1)安装gcc
gcc是linux下的一个编译程序,是C程序的编译工具。
GCC(GNU Compiler Collection) 是 GNU(GNU's Not Unix) 计划提供的编译器家族,它能够支持 C, C++, Objective-C, Fortran, Java 和 Ada 等等程序设计语言前端,同时能够运行在 x86, x86-64, IA-64, PowerPC, SPARC 和 Alpha 等等几乎目前所有的硬件平台上。鉴于这些特征,以及 GCC 编译代码的高效性,使得 GCC 成为绝大多数自由软件开发编译的首选工具。虽然对于程序员们来说,编译器只是一个工具,除了开发和维护人员,很少有人关注编译器的发展,但是 GCC 的影响力是如此之大,它的性能提升甚至有望改善所有的自由软件的运行效率,同时它的内部结构的变化也体现出现代编译器发展的新特征。
(2)能上网:yum install gcc-c++
二次make
jemalloc/jemalloc.h:没有那个文件或目录
运行make distclean之后再make
Redis Test(可以不用执行)
下载TCL的网址:
http://www.linuxfromscratch.org/blfs/view/cvs/general/tcl.html
安装TCL
如果make完成后继续执行make install
查看默认安装目录:usr/local/bin
先要备份我们要修改的内容
cp 不带参数,只能copy一个文件,不能copy带文件的目录,到指定地方.
cp -rf 带参数,就能copy任何数据,到指定地方.
比如:cp test.txt /home/MIR1566-PC/Document 拷贝test文本文件到指定目录下.
比如:cp -rf test /home/MIR1566-PC/Document 拷贝test目录到指定目录下.
cp -rf redis.conf myredis
如果你的用户不是root用户可以使用su进行切换
首先切换到根目录下
运行redis-servier 上面吧把redis.conf 复制到那个文件夹下,就运行那个文件夹就行
[root@localhost demo]# cd / [root@localhost /]# cd usr/local/bin [root@localhost bin]# ll 总用量 32728 -rw-r--r--. 1 root root 574 3月 6 01:20 dump.rdb -rwxr-xr-x. 1 root root 4365176 3月 2 04:00 redis-benchmark -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-check-aof -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-check-rdb -rwxr-xr-x. 1 root root 4800552 3月 2 04:00 redis-cli -rw-r--r--. 1 root root 62153 3月 6 02:08 redis.conf lrwxrwxrwx. 1 root root 12 3月 2 04:00 redis-sentinel -> redis-server -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-server -rw-r--r--. 1 root root 577 3月 5 22:23 temp-16244.rdb [root@localhost bin]# redis-server /myredis 4147:C 06 Apr 2019 03:22:35.248 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo 4147:C 06 Apr 2019 03:22:35.248 # Redis version=5.0.3, bits=64, commit=00000000, modified=0, pid=4147, just started 4147:C 06 Apr 2019 03:22:35.248 # Configuration loaded 4147:M 06 Apr 2019 03:22:35.250 * Increased maximum number of open files to 10032 (it was originally set to 1024). _._ _.-``__ ''-._ _.-`` `. `_. ''-._ Redis 5.0.3 (00000000/0) 64 bit .-`` .-```. ```\/ _.,_ ''-._ ( ' , .-` | `, ) Running in standalone mode |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379 | `-._ `._ / _.-' | PID: 4147 `-._ `-._ `-./ _.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | http://redis.io `-._ `-._`-.__.-'_.-' _.-' |`-._`-._ `-.__.-' _.-'_.-'| | `-._`-._ _.-'_.-' | `-._ `-._`-.__.-'_.-' _.-' `-._ `-.__.-' _.-' `-._ _.-' `-.__.-' 4147:M 06 Apr 2019 03:22:35.257 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128. 4147:M 06 Apr 2019 03:22:35.257 # Server initialized 4147:M 06 Apr 2019 03:22:35.257 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the command 'sysctl vm.overcommit_memory=1' for this to take effect. 4147:M 06 Apr 2019 03:22:35.257 # WARNING you have Transparent Huge Pages (THP) support enabled in your kernel. This will create latency and memory usage issues with Redis. To fix this issue run the command 'echo never > /sys/kernel/mm/transparent_hugepage/enabled' as root, and add it to your /etc/rc.local in order to retain the setting after a reboot. Redis must be restarted after THP is disabled. 4147:M 06 Apr 2019 03:22:35.257 * DB loaded from disk: 0.000 seconds 4147:M 06 Apr 2019 03:22:35.257 * Ready to accept connections
每次启动到这个位置就不动了,试了很多办法都解决,但是我用了一个最笨的方法那就是将这个终端关闭,重新开一个
[demo@localhost ~]$ cd / [demo@localhost /]$ cd usr/local/bin [demo@localhost bin]$ ll 总用量 32728 -rw-r--r--. 1 root root 574 3月 6 01:20 dump.rdb -rwxr-xr-x. 1 root root 4365176 3月 2 04:00 redis-benchmark -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-check-aof -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-check-rdb -rwxr-xr-x. 1 root root 4800552 3月 2 04:00 redis-cli -rw-r--r--. 1 root root 62153 3月 6 02:08 redis.conf lrwxrwxrwx. 1 root root 12 3月 2 04:00 redis-sentinel -> redis-server -rwxr-xr-x. 1 root root 8089392 3月 2 04:00 redis-server -rw-r--r--. 1 root root 577 3月 5 22:23 temp-16244.rdb [demo@localhost bin]$ redis-cli -p 6379 127.0.0.1:6379>
上面的笔记有些单实例的关闭 redis-cli shutdown,但是我照着操作后出现问题
127.0.0.1:6379> redis-cli shutdown (error) ERR unknown command `redis-cli`, with args beginning with: `shutdown`,
解决办法:也就是还没有等我解决呢,这个单实例真的关掉了。
实在不行直接shutdown
如果出现了这种情况
[root@localhost bin]# redis-cli Could not connect to Redis at 127.0.0.1:6379: Connection refused not connected> [root@localhost bin]# exit exit [demo@localhost ~]$ ^C [demo@localhost ~]$
插曲一条快捷键 在文件中快速查找某个命令
先按 / 然后输入你要找的命令 回车就可以了
Redis启动后杂项基础知识讲解
单进程
单进程模型来处理客户端的请求。对读写等事件的响应
是通过对epoll函数的包装来做到的。Redis的实际处理速度完全依靠主进程的执行效率
epoll是Linux内核为处理大批量文件描述符而作了改进的epoll,是Linux下多路复用IO接口select/poll的增强版本,
它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。
redis的数据库个数是可以配置的,默认为16个,见redis.windows.conf/redis.conf的databases 16。
对应数据库的索引值为0 - (databases -1),即16个数据库,索引值为0-15。默认存储的数据库为0。
登陆redis,默认选择了数据库0,如果需要切换到其它数据库使用select 索引值,如select 1表示切换到索引值为1的数据库。
127.0.0.1:6379> select 1 OK 127.0.0.1:6379[1]> select 0 OK 127.0.0.1:6379>
切换之后就会一直在操作的是新数据库,直到下次切换生效。
dbsize查看当前数据库的key的数量
127.0.0.1:6379> dbsize (integer) 12
flushdb:清空当前库
127.0.0.1:6379> flushdb OK 127.0.0.1:6379> dbsize (integer) 0
Flushall;通杀全部库
删除所有数据库的所有key
统一密码管理,16个库都是同样密码,要么都OK要么一个也连接不上
Redis索引都是从零开始
为什么默认端口是6379
6379在是手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字。MERZ长期以来被antirez及其朋友当作愚蠢的代名词。Redis作者antirez同学在twitter上说将在下一篇博文中向大家解释为什么他选择6379作为默认端口号。而现在这篇博文出炉,在解释了Redis的LRU机制之后,向大家解释了采用6379作为默认端口的原因。
Redis的五大数据类型 (有个详细的连接https://www.cnblogs.com/ysocean/p/9102811.html)
对象的type属性记录了对象的类型,这个类型就是前面讲的五大数据类型:
哪里去获得redis常见数据类型操作命令
http://redisdoc.com/
Redis 键(key)
先放进去几个例子
type key 查看你的key是什么类型
127.0.0.1:6379> set key1 v1 OK 127.0.0.1:6379> lpush list1 v1 v2 v3 (integer) 3 127.0.0.1:6379> type key1 string 127.0.0.1:6379> type list1 list
exists key的名字,判断某个key是否存在
127.0.0.1:6379> exists key1 (integer) 1
key*
127.0.0.1:6379> keys * 1) "list1" 2) "key1"
move key db --->当前库就没有了,被移除了
Redis MOVE 命令用于将当前数据库的 key 移动到给定的数据库 db 当中。
语法
redis Move 命令基本语法如下:
- redis 127.0.0.1:6379> MOVE KEY_NAME DESTINATION_DATABASE
可用版本
>= 1.0.0
返回值
移动成功返回 1 ,失败则返回 0 。
实例 # key 存在于当前数据库 redis> SELECT 0 # redis默认使用数据库 0,为了清晰起见,这里再显式指定一次。 OK redis> SET song "secret base - Zone" OK redis> MOVE song 1 # 将 song 移动到数据库 1 (integer) 1 redis> EXISTS song # song 已经被移走 (integer) 0 redis> SELECT 1 # 使用数据库 1 OK redis:1> EXISTS song # 证实 song 被移到了数据库 1 (注意命令提示符变成了"redis:1",表明正在使用数据库 1) (integer) 1 # 当 key 不存在的时候 redis:1> EXISTS fake_key (integer) 0 redis:1> MOVE fake_key 0 # 试图从数据库 1 移动一个不存在的 key 到数据库 0,失败 (integer) 0 redis:1> select 0 # 使用数据库0 OK redis> EXISTS fake_key # 证实 fake_key 不存在 (integer) 0 # 当源数据库和目标数据库有相同的 key 时 redis> SELECT 0 # 使用数据库0 OK redis> SET favorite_fruit "banana" OK redis> SELECT 1 # 使用数据库1 OK redis:1> SET favorite_fruit "apple" OK redis:1> SELECT 0 # 使用数据库0,并试图将 favorite_fruit 移动到数据库 1 OK redis> MOVE favorite_fruit 1 # 因为两个数据库有相同的 key,MOVE 失败 (integer) 0 redis> GET favorite_fruit # 数据库 0 的 favorite_fruit 没变 "banana" redis> SELECT 1 OK redis:1> GET favorite_fruit # 数据库 1 的 favorite_fruit 也是 "apple"
127.0.0.1:6379> keys * 1) "list1" 2) "key1" 127.0.0.1:6379> move key1 1 (integer) 1 127.0.0.1:6379> exists key1 (integer) 0
expire key 秒钟:为给定的key设置过期时间
设置成功返回 1 。 当 key 不存在或者不能为 key 设置过期时间时(比如在低于 2.1.3 版本的 Redis 中你尝试更新 key 的过期时间)返回 0
实例 首先创建一个 key 并赋值: redis 127.0.0.1:6379> SET w3ckey redis OK 为 key 设置过期时间: redis 127.0.0.1:6379> EXPIREAT w3ckey 1293840000 (integer) 1 EXISTS w3ckey (integer) 0
redis> SET mykey "Hello" OK redis> EXPIRE mykey 10 # 为 key 设置生存时间 (integer) 1 redis> TTL mykey (integer) 10 redis> PERSIST mykey # 移除 key 的生存时间 (integer) 1 redis> TTL mykey 以秒为单位,返回给定 key 的剩余生存时间(TTL, time to live)。 (integer) -1
ttl key 查看还有多少秒过期,-1表示永不过期,-2表示已过期
下面来分析5大数据类型
String
常用操作
set / get / del /append /strlen
增删改查,长度
127.0.0.1:6379> set key1 hello OK 127.0.0.1:6379> get key1 "hello" 127.0.0.1:6379> strlen key1 (integer) 5 127.0.0.1:6379> append key1 xiaoming (integer) 12 127.0.0.1:6379> get key1 "helloxiaoming"
Incr/decr/incrby/decrby,一定要是数字才能进行加减
Redis Incr 命令将 key 中储存的数字值增一。
如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作。
如果值包含错误的类型,或字符串类型的值不能表示为数字,那么返回一个错误。
本操作的值限制在 64 位(bit)有符号数字表示之内。
redis> SET page_view 20 OK redis> INCR page_view (integer) 21 redis> GET page_view # 数字值在 Redis 中以字符串的形式保存 "21"
Redis Incrby 命令将 key 中储存的数字加上指定的增量值。
如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCRBY 命令。
如果值包含错误的类型,或字符串类型的值不能表示为数字,那么返回一个错误。
本操作的值限制在 64 位(bit)有符号数字表示之内。
# key 存在且是数字值 redis> SET rank 50 OK redis> INCRBY rank 20 (integer) 70 redis> GET rank "70" # key 不存在时 redis> EXISTS counter (integer) 0 redis> INCRBY counter 30 (integer) 30 redis> GET counter "30" # key 不是数字值时 redis> SET book "long long ago..." OK redis> INCRBY book 200 (error) ERR value is not an integer or out of range
Redis Hdel 命令用于删除哈希表 key 中的一个或多个指定字段,不存在的字段将被忽略。
redis 127.0.0.1:6379> HSET myhash field1 "foo" (integer) 1 redis 127.0.0.1:6379> HDEL myhash field1 (integer) 1 redis 127.0.0.1:6379> HDEL myhash field2 (integer) 0
Redis Hexists 命令用于查看哈希表的指定字段是否存在。
如果哈希表含有给定字段,返回 1 。 如果哈希表不含有给定字段,或 key 不存在,返回 0 。
redis 127.0.0.1:6379> HSET myhash field1 "foo" (integer) 1 redis 127.0.0.1:6379> HEXISTS myhash field1 (integer) 1 redis 127.0.0.1:6379> HEXISTS myhash field2 (integer) 0
Redis Hget 命令用于返回哈希表中指定字段的值。
# 字段存在 redis> HSET site redis redis.com (integer) 1 redis> HGET site redis "redis.com" # 字段不存在 redis> HGET site mysql (nil)
redis> HSET myhash field1 "Hello" (integer) 1 redis> HSET myhash field2 "World" (integer) 1 redis> HGETALL myhash 1) "field1" 2) "Hello" 3) "field2" 4) "World" redis>
Redis Hincrby 命令用于为哈希表中的字段值加上指定增量值。
增量也可以为负数,相当于对指定字段进行减法操作。
如果哈希表的 key 不存在,一个新的哈希表被创建并执行 HINCRBY 命令。
如果指定的字段不存在,那么在执行命令前,字段的值被初始化为 0 。
对一个储存字符串值的字段执行 HINCRBY 命令将造成一个错误。
本操作的值被限制在 64 位(bit)有符号数字表示之内。
redis> HSET myhash field 5 (integer) 1 redis> HINCRBY myhash field 1 (integer) 6 redis> HINCRBY myhash field -1 (integer) 5 redis> HINCRBY myhash field -10 (integer) -5 redis>
Redis Hkeys 命令用于获取哈希表中的所有域(field)。
redis 127.0.0.1:6379> HSET myhash field1 "foo" (integer) 1 redis 127.0.0.1:6379> HSET myhash field2 "bar" (integer) 1 redis 127.0.0.1:6379> HKEYS myhash 1) "field1" 2) "field2"
Redis Hmset 命令用于同时将多个 field-value (字段-值)对设置到哈希表中。
此命令会覆盖哈希表中已存在的字段。
如果哈希表不存在,会创建一个空哈希表,并执行 HMSET 操作。
redis 127.0.0.1:6379> HMSET myhash field1 "Hello" field2 "World" OK redis 127.0.0.1:6379> HGET myhash field1 "Hello" redis 127.0.0.1:6379> HGET myhash field2 "World"
Redis Hlen 命令用于获取哈希表中字段的数量。
哈希表中字段的数量。 当 key 不存在时,返回 0 。
redis 127.0.0.1:6379> HSET myhash field1 "foo" (integer) 1 redis 127.0.0.1:6379> HSET myhash field2 "bar" (integer) 1 redis 127.0.0.1:6379> HLEN myhash (integer) 2
Redis Hmget 命令用于返回哈希表中,一个或多个给定字段的值。
如果指定的字段不存在于哈希表,那么返回一个 nil 值。
一个包含多个给定字段关联值的表,表值的排列顺序和指定字段的请求顺序一样。
redis 127.0.0.1:6379> HSET myhash field1 "foo" (integer) 1 redis 127.0.0.1:6379> HSET myhash field2 "bar" (integer) 1 redis 127.0.0.1:6379> HMGET myhash field1 field2 nofield 1) "foo" 2) "bar" 3) (nil)
Redis Hmset 命令用于同时将多个 field-value (字段-值)对设置到哈希表中。
此命令会覆盖哈希表中已存在的字段。
如果哈希表不存在,会创建一个空哈希表,并执行 HMSET 操作。
如果命令执行成功,返回 OK 。
redis 127.0.0.1:6379> HMSET myhash field1 "Hello" field2 "World" OK redis 127.0.0.1:6379> HGET myhash field1 "Hello" redis 127.0.0.1:6379> HGET myhash field2 "World"
Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。
Redis 中集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是 O(1)。
集合中最大的成员数为 232 - 1 (4294967295, 每个集合可存储40多亿个成员)。
127.0.0.1:6379> sadd l1 k1 (integer) 1 127.0.0.1:6379> sadd l1 k2 (integer) 1 127.0.0.1:6379> sadd l1 k3 (integer) 1 127.0.0.1:6379> sget l1 (error) ERR unknown command `sget`, with args beginning with: `l1`, 127.0.0.1:6379> smembers l1 1) "k3" 2) "k1" 3) "k2"
Redis 有序集合和集合一样也是string类型元素的集合,且不允许重复的成员。
不同的是每个元素都会关联一个double类型的分数。redis正是通过分数来为集合中的成员进行从小到大的排序。
有序集合的成员是唯一的,但分数(score)却可以重复。
集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是O(1)。 集合中最大的成员数为 232 - 1 (4294967295, 每个集合可存储40多亿个成员)。
Redis Zadd 命令用于将一个或多个成员元素及其分数值加入到有序集当中。
如果某个成员已经是有序集的成员,那么更新这个成员的分数值,并通过重新插入这个成员元素,来保证该成员在正确的位置上。
分数值可以是整数值或双精度浮点数。
如果有序集合 key 不存在,则创建一个空的有序集并执行 ZADD 操作。
当 key 存在但不是有序集类型时,返回一个错误。
127.0.0.1:6379> zadd myzset 1 one (integer) 1 127.0.0.1:6379> zadd myzset 1 two (integer) 1 127.0.0.1:6379> zadd myzset 2 three 3 four
127.0.0.1:6379> zrange myzset 0 -1 withscores 1) "one" 2) "1" 3) "two" 4) "1" 5) "three" 6) "2" 7) "four" 8) "3"
127.0.0.1:6379> zcard myzset (integer) 4
Redis Zcard 命令用于计算集合中元素的数量。
Redis Zcount 命令用于计算有序集合中指定分数区间的成员数量。
分数值在 min 和 max 之间的成员的数量。
127.0.0.1:6379> zcount myzset 1 3 (integer) 4
Redis Zincrby 命令对有序集合中指定成员的分数加上增量 increment
可以通过传递一个负数值 increment ,让分数减去相应的值,比如 ZINCRBY key -5 member ,就是让 member 的 score 值减去 5 。
当 key 不存在,或分数不是 key 的成员时, ZINCRBY key increment member 等同于 ZADD key increment member 。
当 key 不是有序集类型时,返回一个错误。
分数值可以是整数值或双精度浮点数。
127.0.0.1:6379> zrange myzset 0 -1 withscores 1) "one" 2) "1" 3) "two" 4) "1" 5) "three" 6) "2" 7) "four" 8) "3" 127.0.0.1:6379> zincrby myzset 3 one "4"
Redis Zinterstore 命令计算给定的一个或多个有序集的交集,其中给定 key 的数量必须以 numkeys 参数指定,并将该交集(结果集)储存到 destination 。
默认情况下,结果集中某个成员的分数值是所有给定集下该成员分数值之和。
返回值
保存到目标结果集的的成员数量
# 有序集 mid_test redis 127.0.0.1:6379> ZADD mid_test 70 "Li Lei" (integer) 1 redis 127.0.0.1:6379> ZADD mid_test 70 "Han Meimei" (integer) 1 redis 127.0.0.1:6379> ZADD mid_test 99.5 "Tom" (integer) 1 # 另一个有序集 fin_test redis 127.0.0.1:6379> ZADD fin_test 88 "Li Lei" (integer) 1 redis 127.0.0.1:6379> ZADD fin_test 75 "Han Meimei" (integer) 1 redis 127.0.0.1:6379> ZADD fin_test 99.5 "Tom" (integer) 1 # 交集 redis 127.0.0.1:6379> ZINTERSTORE sum_point 2 mid_test fin_test (integer) 3 # 显示有序集内所有成员及其分数值 redis 127.0.0.1:6379> ZRANGE sum_point 0 -1 WITHSCORES 1) "Han Meimei" 2) "145" 3) "Li Lei" 4) "158" 5) "Tom" 6) "199"
Redis Zrangebylex 通过字典区间返回有序集合的成员。
返回值
指定区间内的元素列表。
(integer) 7 redis 127.0.0.1:6379> ZRANGEBYLEX myzset - [c 1) "a" 2) "b" 3) "c" redis 127.0.0.1:6379> ZRANGEBYLEX myzset - (c 1) "a" 2) "b" redis 127.0.0.1:6379> ZRANGEBYLEX myzset [aaa (g 1) "b" 2) "c" 3) "d" 4) "e" 5) "f" redis>
Redis Zrangebyscore 返回有序集合中指定分数区间的成员列表。有序集成员按分数值递增(从小到大)次序排列。
具有相同分数值的成员按字典序来排列(该属性是有序集提供的,不需要额外的计算)。
默认情况下,区间的取值使用闭区间 (小于等于或大于等于),你也可以通过给参数前增加 ( 符号来使用可选的开区间 (小于或大于)。
举个例子:
ZRANGEBYSCORE zset (1 5
返回所有符合条件 1 < score <= 5 的成员,而
ZRANGEBYSCORE zset (5 (10
则返回所有符合条件 5 < score < 10 的成员。
redis 127.0.0.1:6379> ZADD salary 2500 jack # 测试数据 (integer) 0 redis 127.0.0.1:6379> ZADD salary 5000 tom (integer) 0 redis 127.0.0.1:6379> ZADD salary 12000 peter (integer) 0 redis 127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf # 显示整个有序集 1) "jack" 2) "tom" 3) "peter" redis 127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf WITHSCORES # 显示整个有序集及成员的 score 值 1) "jack" 2) "2500" 3) "tom" 4) "5000" 5) "peter" 6) "12000" redis 127.0.0.1:6379> ZRANGEBYSCORE salary -inf 5000 WITHSCORES # 显示工资 <=5000 的所有成员 1) "jack" 2) "2500" 3) "tom" 4) "5000" redis 127.0.0.1:6379> ZRANGEBYSCORE salary (5000 400000 # 显示工资大于 5000 小于等于 400000 的成员 1) "peter"
Redis Zrank 返回有序集中指定成员的排名。其中有序集成员按分数值递增(从小到大)顺序排列。
返回值
如果成员是有序集 key 的成员,返回 member 的排名。 如果成员不是有序集 key 的成员,返回 nil 。
redis 127.0.0.1:6379> ZRANGE salary 0 -1 WITHSCORES # 显示所有成员及其 score 值 1) "peter" 2) "3500" 3) "tom" 4) "4000" 5) "jack" 6) "5000" redis 127.0.0.1:6379> ZRANK salary tom # 显示 tom 的薪水排名,第二 (integer) 1
redis 127.0.0.1:6379> ZRANGE salary 0 -1 WITHSCORES # 测试数据 1) "tom" 2) "2000" 3) "peter" 4) "3500" 5) "jack" 6) "5000" redis 127.0.0.1:6379> ZSCORE salary peter
redis 的事务管理
Redis 事务可以一次执行多个命令, 并且带有以下两个重要的保证:
- 批量操作在发送 EXEC 命令前被放入队列缓存。
- 收到 EXEC 命令后进入事务执行,事务中任意命令执行失败,其余的命令依然被执行。
- 在事务执行过程,其他客户端提交的命令请求不会插入到事务执行命令序列中。
一个事务从开始到执行会经历以下三个阶段:
- 开始事务。
- 命令入队。
- 执行事务。
- https://www.cnblogs.com/kyrin/p/5967620.html感谢博主我做个笔记
- Redis会将一个事务中的所有命令序列化,然后按顺序执行。Redis不可能在一个Redis事务的执行过程中插入执行另一个客户端发出的请求。这样便能保证Redis将这些命令作为一个单独的隔离操作执行。 > 在一个Redis事务中,Redis要么执行其中的所有命令,要么什么都不执行。
- 因此,Redis事务能够保证原子性。EXEC命令会触发执行事务中的所有命令。因此,当某个客户端正在执行一次事务时,如果它在调用MULTI命令之前就从Redis服务端断开连接,那么就不会执行事务中的任何操作;相反,如果它在调用EXEC命令之后才从Redis服务端断开连接,那么就会执行事务中的所有操作。当Redis使用只增文件(AOF:Append-only File)时,Redis能够确保使用一个单独的write(2)系统调用,这样便能将事务写入磁盘。然而,如果Redis服务器宕机,或者系统管理员以某种方式停止Redis服务进程的运行,那么Redis很有可能只执行了事务中的一部分操作。Redis将会在重新启动时检查上述状态,然后退出运行,并且输出报错信息。使用redis-check-aof工具可以修复上述的只增文件,这个工具将会从上述文件中删除执行不完全的事务,这样Redis服务器才能再次启动。
-
一、相关命令
1. MULTI
用于标记事务块的开始。Redis会将后续的命令逐个放入队列中,然后才能使用EXEC命令原子化地执行这个命令序列。
这个命令的运行格式如下所示:
MULTI这个命令的返回值是一个简单的字符串,总是OK。
2. EXEC
在一个事务中执行所有先前放入队列的命令,然后恢复正常的连接状态。
当使用WATCH命令时,只有当受监控的键没有被修改时,EXEC命令才会执行事务中的命令,这种方式利用了检查再设置(CAS)的机制。
这个命令的运行格式如下所示:
EXEC这个命令的返回值是一个数组,其中的每个元素分别是原子化事务中的每个命令的返回值。 当使用WATCH命令时,如果事务执行中止,那么EXEC命令就会返回一个Null值。
3. DISCARD
清除所有先前在一个事务中放入队列的命令,然后恢复正常的连接状态。
如果使用了WATCH命令,那么DISCARD命令就会将当前连接监控的所有键取消监控。
这个命令的运行格式如下所示:
DISCARD
这个命令的返回值是一个简单的字符串,总是OK。
4. WATCH
当某个事务需要按条件执行时,就要使用这个命令将给定的键设置为受监控的。
这个命令的运行格式如下所示:
WATCH key [key ...]
这个命令的返回值是一个简单的字符串,总是OK。
对于每个键来说,时间复杂度总是O(1)。
5. UNWATCH
清除所有先前为一个事务监控的键。
如果你调用了EXEC或DISCARD命令,那么就不需要手动调用UNWATCH命令。
这个命令的运行格式如下所示:
UNWATCH
这个命令的返回值是一个简单的字符串,总是OK。
时间复杂度总是O(1)。
二、使用方法
使用MULTI命令便可以进入一个Redis事务。这个命令的返回值总是OK。此时,用户可以发出多个Redis命令。Redis会将这些命令放入队列,而不是执行这些命令。一旦调用EXEC命令,那么Redis就会执行事务中的所有命令。
相反,调用DISCARD命令将会清除事务队列,然后退出事务。
以下示例会原子化地递增foo键和bar键的值:
正如从上面的会话所看到的一样,EXEC命令的返回值是一个数组,其中的每个元素都分别是事务中的每个命令的返回值,返回值的顺序和命令的发出顺序是相同的。
当一个Redis连接正处于MULTI请求的上下文中时,通过这个连接发出的所有命令的返回值都是QUEUE字符串(从Redis协议的角度来看,返回值是作为状态回复(Status Reply)来发送的)。当调用EXEC命令时,Redis会简单地调度执行事务队列中的命令。
三、事务内部的错误
在一个事务的运行期间,可能会遇到两种类型的命令错误:
一个命令可能会在被放入队列时失败。因此,事务有可能在调用EXEC命令之前就发生错误。例如,这个命令可能会有语法错误(参数的数量错误、命令名称错误,等等),或者可能会有某些临界条件(例如:如果使用maxmemory指令,为Redis服务器配置内存限制,那么就可能会有内存溢出条件)。
在调用EXEC命令之后,事务中的某个命令可能会执行失败。例如,我们对某个键执行了错误类型的操作(例如,对一个字符串(String)类型的键执行列表(List)类型的操作)。可以使用Redis客户端检测第一种类型的错误,在调用EXEC命令之前,这些客户端可以检查被放入队列的命令的返回值:如果命令的返回值是QUEUE字符串,那么就表示已经正确地将这个命令放入队列;否则,Redis将返回一个错误。如果将某个命令放入队列时发生错误,那么大多数客户端将会中止事务,并且丢弃这个事务。
然而,从Redis 2.6.5版本开始,服务器会记住事务积累命令期间发生的错误。然后,Redis会拒绝执行这个事务,在运行EXEC命令之后,便会返回一个错误消息。最后,Redis会自动丢弃这个事务。
在Redis 2.6.5版本之前,如果发生了上述的错误,那么在客户端调用了EXEC命令之后,Redis还是会运行这个出错的事务,执行已经成功放入事务队列的命令,而不会关心先前发生的错误。从2.6.5版本开始,Redis在遭遇上述错误时,会采用先前描述的新行为,这样便能轻松地混合使用事务和管道。在这种情况下,客户端可以一次性地将整个事务发送至Redis服务器,稍后再一次性地读取所有的返回值。
相反,在调用EXEC命令之后发生的事务错误,Redis不会进行任何特殊处理:在事务运行期间,即使某个命令运行失败,所有其他的命令也将会继续执行。
这种行为在协议层面上更加清晰。在以下示例中,当事务正在运行时,有一条命令将会执行失败,即使这条命令的语法是正确的:
上述示例的EXEC命令的返回值是批量的字符串,包含两个元素,一个是OK代码,另一个是-ERR错误消息。客户端会根据自身的程序库,选择一种合适的方式,将错误信息提供给用户
需要注意的是,即使某个命令执行失败,事务队列中的所有其他命令仍然会执行 —— Redis不会停止执行事务中的命令。
再看另一个示例,再次使用telnet通信协议,观察命令的语法错误是如何尽快报告给用户的:
这一次,由于INCR命令的语法错误,Redis根本就没有将这个命令放入事务队列。
四、为什么Redis不支持回滚?
如果你具备关系型数据库的知识背景,你就会发现一个事实:在事务运行期间,虽然Redis命令可能会执行失败,但是Redis仍然会执行事务中余下的其他命令,而不会执行回滚操作,你可能会觉得这种行为很奇怪。
然而,这种行为也有其合理之处:
只有当被调用的Redis命令有语法错误时,这条命令才会执行失败(在将这个命令放入事务队列期间,Redis能够发现此类问题),或者对某个键执行不符合其数据类型的操作:实际上,这就意味着只有程序错误才会导致Redis命令执行失败,这种错误很有可能在程序开发期间发现,一般很少在生产环境发现。
Redis已经在系统内部进行功能简化,这样可以确保更快的运行速度,因为Redis不需要事务回滚的能力。对于Redis事务的这种行为,有一个普遍的反对观点,那就是程序有可能会有缺陷(bug)。但是,你应当注意到:事务回滚并不能解决任何程序错误。例如,如果某个查询会将一个键的值递增2,而不是1,或者递增错误的键,那么事务回滚机制是没有办法解决这些程序问题的。请注意,没有人能解决程序员自己的错误,这种错误可能会导致Redis命令执行失败。正因为这些程序错误不大可能会进入生产环境,所以我们在开发Redis时选用更加简单和快速的方法,没有实现错误回滚的功能。
五、丢弃命令队列
DISCARD命令可以用来中止事务运行。在这种情况下,不会执行事务中的任何命令,并且会将Redis连接恢复为正常状态。示例如下所示:
六、通过CAS操作实现乐观锁
Redis使用WATCH命令实现事务的“检查再设置”(CAS)行为。
作为WATCH命令的参数的键会受到Redis的监控,Redis能够检测到它们的变化。在执行EXEC命令之前,如果Redis检测到至少有一个键被修改了,那么整个事务便会中止运行,然后EXEC命令会返回一个Null值,提醒用户事务运行失败。
例如,设想我们需要将某个键的值自动递增1(假设Redis没有INCR命令)。
首次尝试的伪码可能如下所示:
val = GET mykey val = val + 1 SET mykey $val
如果我们只有一个Redis客户端在一段指定的时间之内执行上述伪码的操作,那么这段伪码将能够可靠的工作。如果有多个客户端大约在同一时间尝试递增这个键的值,那么将会产生竞争状态。例如,客户端-A和客户端-B都会读取这个键的旧值(例如:10)。这两个客户端都会将这个键的值递增至11,最后使用SET命令将这个键的新值设置为11。因此,这个键的最终值是11,而不是12。
现在,我们可以使用WATCH命令完美地解决上述的问题,伪码如下所示:
WATCH mykey val = GET mykey val = val + 1 MULTI SET mykey $val EXEC
由上述伪码可知,如果存在竞争状态,并且有另一个客户端在我们调用WATCH命令和EXEC命令之间的时间内修改了val变量的结果,那么事务将会运行失败。
我们只需要重复执行上述伪码的操作,希望此次运行不会再出现竞争状态。这种形式的锁就被称为乐观锁,它是一种非常强大的锁。在许多用例中,多个客户端可能会访问不同的键,因此不太可能发生冲突 —— 也就是说,通常没有必要重复执行上述伪码的操作。
七、WATCH命令详解
那么WATCH命令实际做了些什么呢?这个命令会使得EXEC命令在满足某些条件时才会运行事务:我们要求Redis只有在所有受监控的键都没有被修改时,才会执行事务。(但是,相同的客户端可能会在事务内部修改这些键,此时这个事务不会中止运行。)否则,Redis根本就不会进入事务。(注意,如果你使用WATCH命令监控一个易失性的键,然后在你监控这个键之后,Redis再使这个键过期,那么EXEC命令仍然可以正常工作。)
WATCH命令可以被调用多次。简单说来,所有的WATCH命令都会在被调用之时立刻对相应的键进行监控,直到EXEC命令被调用之时为止。你可以在单条的WATCH命令之中,使用任意数量的键作为命令参数。
当调用EXEC命令时,所有的键都会变为未受监控的状态,Redis不会管事务是否被中止。当一个客户单连接被关闭时,所有的键也都会变为未受监控的状态。
你还可以使用UNWATCH命令(不需要任何参数),这样便能清除所有的受监控键。当我们对某些键施加乐观锁之后,这个命令有时会非常有用。因为,我们可能需要运行一个用来修改这些键的事务,但是在读取这些键的当前内容之后,我们可能不打算继续进行操作,此时便可以使用UNWATCH命令,清除所有受监控的键。在运行UNWATCH命令之后,Redis连接便可以再次自由地用于运行新事务。
如何使用WATCH命令实现ZPOP操作呢?
本文将通过一个示例,说明如何使用WATCH命令创建一个新的原子化操作(Redis并不原生支持这个原子化操作),此处会以实现ZPOP操作为例。这个命令会以一种原子化的方式,从一个有序集合中弹出分数最低的元素。以下源码是最简单的实现方式:
WATCH zset element = ZRANGE zset 0 0 MULTI ZREM zset element EXEC
如果伪码中的EXEC命令执行失败(例如,返回Null值),那么我们只需要重复运行这个操作即可。
八、Redis脚本和事务
根据定义,Redis脚本也是事务型的。因此,你可以通过Redis事务实现的功能,同样也可以通过Redis脚本来实现,而且通常脚本更简单、更快速。
由于Redis从2.6版本才开始引入脚本特性,而事务特性是很久以前就已经存在的,所以目前的版本才有两个看起来重复的特性。但是,我们不太可能在短时间内移除对事务特性的支持。因为,即使不用求助于Redis脚本,用户仍然能够规避竞争状态,这从语义上来看是适宜的。还有另一个更重要的原因,Redis事务特性的实现复杂度是最小的。
但是,在相当长的一段时间之内,我们不大可能看到整个用户群体都只使用Redis脚本。如果发生这种情况,那么我们可能会废弃,甚至最终移除Redis事务。
在远程服务上执行命令
如果需要在远程 redis 服务上执行命令,同样我们使用的也是 redis-cli 命令。
语法
$ redis-cli -h host -p port -a password
实例
以下实例演示了如何连接到主机为 127.0.0.1,端口为 6379 ,密码为 mypass 的 redis 服务上。
$redis-cli -h 127.0.0.1 -p 6379 -a "mypass" redis 127.0.0.1:6379> redis 127.0.0.1:6379> PING PONG
有时候会有中文乱码。
要在 redis-cli 后面加上 --raw
redis-cli --raw
解析配置文件redis.conf
units单位
1 配置大小单位,开头定义了一些基本的度量单位,只支持bytes,不支持bit
2 对大小写不敏感
# 1k => 1000 bytes # 1kb => 1024 bytes # 1m => 1000000 bytes # 1mb => 1024*1024 bytes # 1g => 1000000000 bytes # 1gb => 1024*1024*1024 bytes
INCLUDES包含
和我们的Struts2配置文件类似,可以通过includes包含,redis.conf可以作为总闸,包含其他
################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you # have a standard template that goes to all Redis servers but also need # to customize a few per-server settings. Include files can include # other files, so use this wisely. # # Notice option "include" won't be rewritten by command "CONFIG REWRITE" # from admin or Redis Sentinel. Since Redis always uses the last processed # line as value of a configuration directive, you'd better put includes # at the beginning of this file to avoid overwriting config change at runtime. # # If instead you are interested in using includes to override configuration # options, it is better to use include as the last line. # # include /path/to/local.conf # include /path/to/other.conf
GENERAL通用
---------------------------------------------------------------------------------------------------------------------------
SNAPSHOTTING快照
save 秒钟 写操作次数
# save "" save 900 1 save 300 10 save 60 10000
如果想禁用RDB持久化的策略,只要不设置任何save指令,或者给save传入一个空字符串参数也可以
stop-writes-on-bgsave-error
如果配置成no,表示你不在乎数据不一致或者有其他的手段发现和控制
rdbcompression
rdbcompression:对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用
LZF算法进行压缩。如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能
rdbchecksum
rdbchecksum:在存储快照后,还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约
10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能
dbfilename
dir
----------------------------------------------------------------------------------------------------------------------------------------------
REPLICATION复制
SECURITY安全
访问密码的查看、设置和取消
LIMITS限制
maxclients:
设置redis同时可以与多少个客户端进行连接。默认情况下为10000个客户端。当你
无法设置进程文件句柄限制时,redis会设置为当前的文件句柄限制值减去32,因为redis会为自
身内部处理逻辑留一些句柄出来。如果达到了此限制,redis则会拒绝新的连接请求,并且向这
些连接请求方发出“max number of clients reached”以作回应。
maxmemory:
设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,
那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。
但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明你的redis有从redis),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素
maxmemory-policy:
(1)volatile-lru:使用LRU算法移除key,只对设置了过期时间的键
(2)allkeys-lru:使用LRU算法移除key
(3)volatile-random:在过期集合中移除随机的key,只对设置了过期时间的键
(4)allkeys-random:移除随机的key
(5)volatile-ttl:移除那些TTL值最小的key,即那些最近要过期的key
(6)noeviction:不进行移除。针对写操作,只是返回错误信息
maxmemory-samples
设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,
redis默认会检查这么多个key并选择其中LRU的那个
APPEND ONLY MODE追加
常见配置redis.conf介绍
参数说明
redis.conf 配置项说明如下:
1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no
守护进程daemonize
,是指没有控制终端,运行在后台的进程,通常伴随着系统启动产生,系统关机结束。可以使用命令ps -axj
查看系统的守护进程,
2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
pidfile /var/run/redis.pid
3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
port 6379
4. 绑定的主机地址
bind 127.0.0.1
5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 300
6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
loglevel verbose
7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
logfile stdout
8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
databases 16
9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
save <seconds> <changes>
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
rdbcompression yes
11. 指定本地数据库文件名,默认值为dump.rdb
dbfilename dump.rdb
12. 指定本地数据库存放目录
dir ./
13. 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
slaveof <masterip> <masterport>
14. 当master服务设置了密码保护时,slav服务连接master的密码
masterauth <master-password>
15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
requirepass foobared
16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
maxclients 128
17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
maxmemory <bytes>
18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no
19. 指定更新日志文件名,默认为appendonly.aof
appendfilename appendonly.aof
20. 指定更新日志条件,共有3个可选值:
no:表示等操作系统进行数据缓存同步到磁盘(快)
always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec
21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-enabled no
22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap
23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0
24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32
25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728
26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4
27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
glueoutputbuf yes
28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 64
hash-max-zipmap-value 512
29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
activerehashing yes
30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
include /path/to/local.conf
Redis的Java客户端Jedis
我创建了一个maven工程
<!-- https://mvnrepository.com/artifact/commons-pool/commons-pool --> <dependency> <groupId>commons-pool</groupId> <artifactId>commons-pool</artifactId> <version>1.6</version> </dependency> <!-- https://mvnrepository.com/artifact/redis.clients/jedis --> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>2.9.0</version> </dependency>
public class Demo01 { public static void main(String[] args) { //连接本地的 Redis 服务 Jedis jedis = new Jedis("127.0.0.1",6379); //查看服务是否运行,打出pong表示OK System.out.println("connection is OK==========>: "+jedis.ping()); } }
redis 连接idea出现的错误
一直被拒绝连接 网上查找的所有方法,几乎全失败
方法一:失败
1.查看是否启动进程 lsof -i :6379 结果如下,证明开启 COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME redis-ser 11560 root 4u IPv4 69938 0t0 TCP *:6379 (LISTEN) 查找配置文件 查看是否将默认只能本地访问redis改为所有IP均可以访问 bind 127.0.0.1 改为 bind 0.0.0.0 查看端口号是否为6379 service iptables stop
https://blog.csdn.net/DragonFreedom/article/details/79512686 (失败)
注意:redis.conf每次修改完之后都要重新启动redis,进入redis的安装目录,比如我的是 /usr/local/redis/bin 关闭和启动redis的命令如下
./redis-cli shutdown
./redis-server redis.conf
笔记做到了这里真是费了九牛二虎之力才搞定redis 跟idea连接在一起,原来没有设置密码是不让连接的。
现在开始学习新的东西
redis的持久化
在指定的时间间隔内将内存中的数据集快照写入磁盘,
也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里
Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到
一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。
整个过程中,主进程是不进行任何IO操作的,这就确保了极高的性能
如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方
式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。
Fork
fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等)
数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程
rdb 保存的是dump.rdb文件
如何触发RDB快照
(1)如何触发RDB快照
配置文件中默认的快照配置
冷拷贝后重新使用 可以cp dump.rdb dump_new.rdb
命令save或者是bgsave
Save:save时只管保存,其它不管,全部阻塞
BGSAVE:Redis会在后台异步进行快照操作,
快照同时还可以响应客户端请求。可以通过lastsave
命令获取最后一次成功执行快照的时间
执行flushall命令,也会产生dump.rdb文件,但里面是空的,无意义
如何恢复
将备份文件 (dump.rdb) 移动到 redis 安装目录并启动服务即可
CONFIG GET dir获取目录
优势
适合大规模的数据恢复
对数据完整性和一致性要求不高
劣势
在一定间隔时间做一次备份,所以如果redis意外down掉的话,就
会丢失最后一次快照后的所有修改
fork的时候,内存中的数据被克隆了一份,大致2倍的膨胀性需要考虑
如何停止
动态所有停止RDB保存规则的方法:redis-cli config set save ""
--------------------------------------------------------------------
AOF(Append Only File)
以日志的形式来记录每个写操作,将Redis执行过的所有写指令记录下来(读操作不记录),
只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis
重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作
Aof保存的是appendonly.aof文件
配置位置
AOF启动/修复/恢复
正常恢复:
启动:设置Yes 修改默认的appendonly no,改为yes
将有数据的aof文件复制一份保存到对应目录(config get dir)
恢复:重启redis然后重新加载
异常恢复:
备份被写坏的AOF文件
修复: redis-check-aof --fix进行修复
恢复:重启redis然后重新加载
rewrite
优势
每修改同步:appendfsync always 同步持久化 每次发生数据变更会被立即记录到磁盘 性能较差但数据完整性比较好
每秒同步:appendfsync everysec 异步操作,每秒记录 如果一秒内宕机,有数据丢失
不同步:appendfsync no 从不同步
劣势
相同数据集的数据而言aof文件要远大于rdb文件,恢复速度慢于rdb
aof运行效率要慢于rdb,每秒同步策略效率较好,不同步效率和rdb相同
总结(Which one)
RDB持久化方式能够在指定的时间间隔能对你的数据进行快照存储
AOF持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些
命令来恢复原始的数据,AOF命令以redis协议追加保存每次写的操作到文件末尾.
Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大
只做缓存:如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化方式.
同时开启两种持久化方式
在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,
因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整.
RDB的数据不实时,同时使用两者时服务器重启也只会找AOF文件。那要不要只使用AOF呢?
作者建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),
快速重启,而且不会有AOF可能潜在的bug,留着作为一个万一的手段。
性能建议
因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够了,只保留save 900 1这条规则。
如果Enalbe AOF,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自己的AOF文件就可以了。代价一是带来了持续的IO,二是AOF rewrite的最后将rewrite过程中产生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上。默认超过原大小100%大小时重写可以改到适当的数值。
如果不Enable AOF ,仅靠Master-Slave Replication 实现高可用性也可以。能省掉一大笔IO也减少了rewrite时带来的系统波动。代价是如果Master/Slave同时倒掉,会丢失十几分钟的数据,启动脚本也要比较两个Master/Slave中的RDB文件,载入较新的那个。新浪微博就选用了这种架构
解析配置文件redis.conf
units单位
1 配置大小单位,开头定义了一些基本的度量单位,只支持bytes,不支持bit
2 对大小写不敏感
INCLUDES包含
和我们的Struts2配置文件类似,可以通过includes包含,redis.conf可以作为总闸,包含其他
GENERAL通用
1.daemonize
2.pidfile
3.port
4.tcp-backlog
设置tcp的backlog,backlog其实是一个连接队列,backlog队列总和=未完成三次握手队列 + 已经完成三次握手队列。
在高并发环境下你需要一个高backlog值来避免慢客户端连接问题。注意Linux内核会将这个值减小到/proc/sys/net/core/somaxconn的值,所以需要确认增大somaxconn和 tcp_max_syn_backlog两个值来达到想要的效果
5.timeout
6.bind
7.tcp-keepalive
单位为秒,如果设置为0,则不会进行Keepalive检测,建议设置成60
8.loglevel
9.logfile
10.syslog-enabled
是否把日志输出到syslog中
11.syslog-ident
指定syslog里的日志标志
12.syslog-facility
指定syslog设备,值可以是USER或LOCAL0-LOCAL7
13.databases
SNAPSHOTTING快照
Save
save 秒钟 写操作次数
RDB是整个内存的压缩过的Snapshot,RDB的数据结构,可以配置复合的快照触发条件,
默认
是1分钟内改了1万次,
或5分钟内改了10次,
或15分钟内改了1次。
禁用
如果想禁用RDB持久化的策略,只要不设置任何save指令,或者给save传入一个空字符串参数也可以
stop-writes-on-bgsave-error
如果配置成no,表示你不在乎数据不一致或者有其他的手段发现和控制
rdbcompression
rdbcompression:对于存储到磁盘中的快照,可以设置是否进行压缩存储。如果是的话,redis会采用
LZF算法进行压缩。如果你不想消耗CPU来进行压缩的话,可以设置为关闭此功能
rdbchecksum
rdbchecksum:在存储快照后,还可以让redis使用CRC64算法来进行数据校验,但是这样做会增加大约
10%的性能消耗,如果希望获取到最大的性能提升,可以关闭此功能
dbfilename
dir
REPLICATION复制
SECURITY安全
访问密码的查看、设置和取消
LIMITS限制
maxclients
设置redis同时可以与多少个客户端进行连接。默认情况下为10000个客户端。当你
无法设置进程文件句柄限制时,redis会设置为当前的文件句柄限制值减去32,因为redis会为自
身内部处理逻辑留一些句柄出来。如果达到了此限制,redis则会拒绝新的连接请求,并且向这
些连接请求方发出“max number of clients reached”以作回应。
maxmemory
设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,
那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。
但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明你的redis有从redis),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素
maxmemory-policy
maxmemory-samples
设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,
redis默认会检查这么多个key并选择其中LRU的那个
APPEND ONLY MODE追加
常见配置redis.conf介绍
参数说明
redis.conf 配置项说明如下:
1. Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no
2. 当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
pidfile /var/run/redis.pid
3. 指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
port 6379
4. 绑定的主机地址
bind 127.0.0.1
5.当 客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 300
6. 指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
loglevel verbose
7. 日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
logfile stdout
8. 设置数据库的数量,默认数据库为0,可以使用SELECT <dbid>命令在连接上指定数据库id
databases 16
9. 指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
save <seconds> <changes>
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。
10. 指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
rdbcompression yes
11. 指定本地数据库文件名,默认值为dump.rdb
dbfilename dump.rdb
12. 指定本地数据库存放目录
dir ./
13. 设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
slaveof <masterip> <masterport>
14. 当master服务设置了密码保护时,slav服务连接master的密码
masterauth <master-password>
15. 设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH <password>命令提供密码,默认关闭
requirepass foobared
16. 设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
maxclients 128
17. 指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
maxmemory <bytes>
18. 指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no
19. 指定更新日志文件名,默认为appendonly.aof
appendfilename appendonly.aof
20. 指定更新日志条件,共有3个可选值:
no:表示等操作系统进行数据缓存同步到磁盘(快)
always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec
21. 指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-enabled no
22. 虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap
23. 将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0
24. Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32
25. 设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728
26. 设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4
27. 设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
glueoutputbuf yes
28. 指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 64
hash-max-zipmap-value 512
29. 指定是否激活重置哈希,默认为开启(后面在介绍Redis的哈希算法时具体介绍)
activerehashing yes
30. 指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
include /path/to/local.conf
Redis的事务
主要有这么几种情况
Case5:watch监控
悲观锁/乐观锁/CAS(Check And Set)
悲观锁
悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁
乐观锁
乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,
乐观锁策略:提交版本必须大于记录当前版本才能执行更新
CAS
Redis 的发布订阅
进程间的一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息。
先订阅后发布后才能收到消息,
1 可以一次性订阅多个,SUBSCRIBE c1 c2 c3
2 消息发布,PUBLISH c2 hello-redis
===========================================================================================================
3 订阅多个,通配符*, PSUBSCRIBE new*
4 收取消息, PUBLISH new1 redis2015
主从问题演示
1 切入点问题?slave1、slave2是从头开始复制还是从切入点开始复制?比如从k4进来,那之前的123是否也可以复制
2 从机是否可以写?set可否?
3 主机shutdown后情况如何?从机是上位还是原地待命
4 主机又回来了后,主机新增记录,从机还能否顺利复制?
5 其中一台从机down后情况如何?依照原有它能跟上大部队吗?
复制的缺点
复制延时
由于所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。
Redis的Java客户端Jedis
Jedis常用操作
测试连通性
public class Demo01 { public static void main(String[] args) { //连接本地的 Redis 服务 Jedis jedis = new Jedis("127.0.0.1",6379); //查看服务是否运行,打出pong表示OK System.out.println("connection is OK==========>: "+jedis.ping()); } }
5+1
package com.atguigu.redis.test; import java.util.*; import redis.clients.jedis.Jedis; public class Test02 { public static void main(String[] args) { Jedis jedis = new Jedis("127.0.0.1",6379); //key Set<String> keys = jedis.keys("*"); for (Iterator iterator = keys.iterator(); iterator.hasNext();) { String key = (String) iterator.next(); System.out.println(key); } System.out.println("jedis.exists====>"+jedis.exists("k2")); System.out.println(jedis.ttl("k1")); //String //jedis.append("k1","myreids"); System.out.println(jedis.get("k1")); jedis.set("k4","k4_redis"); System.out.println("----------------------------------------"); jedis.mset("str1","v1","str2","v2","str3","v3"); System.out.println(jedis.mget("str1","str2","str3")); //list System.out.println("----------------------------------------"); //jedis.lpush("mylist","v1","v2","v3","v4","v5"); List<String> list = jedis.lrange("mylist",0,-1); for (String element : list) { System.out.println(element); } //set jedis.sadd("orders","jd001"); jedis.sadd("orders","jd002"); jedis.sadd("orders","jd003"); Set<String> set1 = jedis.smembers("orders"); for (Iterator iterator = set1.iterator(); iterator.hasNext();) { String string = (String) iterator.next(); System.out.println(string); } jedis.srem("orders","jd002"); System.out.println(jedis.smembers("orders").size()); //hash jedis.hset("hash1","userName","lisi"); System.out.println(jedis.hget("hash1","userName")); Map<String,String> map = new HashMap<String,String>(); map.put("telphone","13811814763"); map.put("address","atguigu"); map.put("email","abc@163.com"); jedis.hmset("hash2",map); List<String> result = jedis.hmget("hash2", "telphone","email"); for (String element : result) { System.out.println(element); } //zset jedis.zadd("zset01",60d,"v1"); jedis.zadd("zset01",70d,"v2"); jedis.zadd("zset01",80d,"v3"); jedis.zadd("zset01",90d,"v4"); Set<String> s1 = jedis.zrange("zset01",0,-1); for (Iterator iterator = s1.iterator(); iterator.hasNext();) { String string = (String) iterator.next(); System.out.println(string); } } }
一个key
五大数据类型
事务提交
日常
package com.atguigu.redis.test; import redis.clients.jedis.Jedis; import redis.clients.jedis.Response; import redis.clients.jedis.Transaction; public class Test03 { public static void main(String[] args) { Jedis jedis = new Jedis("127.0.0.1",6379); //监控key,如果该动了事务就被放弃 /*3 jedis.watch("serialNum"); jedis.set("serialNum","s#####################"); jedis.unwatch();*/ Transaction transaction = jedis.multi();//被当作一个命令进行执行 Response<String> response = transaction.get("serialNum"); transaction.set("serialNum","s002"); response = transaction.get("serialNum"); transaction.lpush("list3","a"); transaction.lpush("list3","b"); transaction.lpush("list3","c"); transaction.exec(); //2 transaction.discard(); System.out.println("serialNum***********"+response.get()); } }
加锁
public class TestTransaction { public boolean transMethod() { Jedis jedis = new Jedis("127.0.0.1", 6379); int balance;// 可用余额 int debt;// 欠额 int amtToSubtract = 10;// 实刷额度 jedis.watch("balance"); //jedis.set("balance","5");//此句不该出现,讲课方便。模拟其他程序已经修改了该条目 balance = Integer.parseInt(jedis.get("balance")); if (balance < amtToSubtract) { jedis.unwatch(); System.out.println("modify"); return false; } else { System.out.println("***********transaction"); Transaction transaction = jedis.multi(); transaction.decrBy("balance", amtToSubtract); transaction.incrBy("debt", amtToSubtract); transaction.exec(); balance = Integer.parseInt(jedis.get("balance")); debt = Integer.parseInt(jedis.get("debt")); System.out.println("*******" + balance); System.out.println("*******" + debt); return true; } } /** * 通俗点讲,watch命令就是标记一个键,如果标记了一个键, 在提交事务前如果该键被别人修改过,那事务就会失败,这种情况通常可以在程序中 * 重新再尝试一次。 * 首先标记了键balance,然后检查余额是否足够,不足就取消标记,并不做扣减; 足够的话,就启动事务进行更新操作, * 如果在此期间键balance被其它人修改, 那在提交事务(执行exec)时就会报错, 程序中通常可以捕获这类错误再重新执行一次,直到成功。 */ public static void main(String[] args) { TestTransaction test = new TestTransaction(); boolean retValue = test.transMethod(); System.out.println("main retValue-------: " + retValue); } }
主从复制
public static void main(String[] args) throws InterruptedException { Jedis jedis_M = new Jedis("127.0.0.1",6379); Jedis jedis_S = new Jedis("127.0.0.1",6380); jedis_S.slaveof("127.0.0.1",6379); jedis_M.set("k6","v6"); Thread.sleep(500); System.out.println(jedis_S.get("k6")); }
JedisPool
常见案例
JedisPoolUtil
package com.atguigu.redis.test; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPoolConfig; public class JedisPoolUtil { private static volatile JedisPool jedisPool = null;//被volatile修饰的变量不会被本地线程缓存,对该变量的读写都是直接操作共享内存。 private JedisPoolUtil() {} public static JedisPool getJedisPoolInstance() { if(null == jedisPool) { synchronized (JedisPoolUtil.class) { if(null == jedisPool) { JedisPoolConfig poolConfig = new JedisPoolConfig(); poolConfig.setMaxActive(1000); poolConfig.setMaxIdle(32); poolConfig.setMaxWait(100*1000); poolConfig.setTestOnBorrow(true); jedisPool = new JedisPool(poolConfig,"127.0.0.1"); } } } return jedisPool; } public static void release(JedisPool jedisPool,Jedis jedis) { if(null != jedis) { jedisPool.returnResourceObject(jedis); } } }
Demo5
package com.atguigu.redis.test; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; public class Test01 { public static void main(String[] args) { JedisPool jedisPool = JedisPoolUtil.getJedisPoolInstance(); Jedis jedis = null; try { jedis = jedisPool.getResource(); jedis.set("k18","v183"); } catch (Exception e) { e.printStackTrace(); }finally{ JedisPoolUtil.release(jedisPool, jedis); } } }
jedisPool.getResource();
配置总结all
JedisPool的配置参数大部分是由JedisPoolConfig的对应项来赋值的。 maxActive:控制一个pool可分配多少个jedis实例,通过pool.getResource()来获取;如果赋值为-1,则表示不限制;如果pool已经分配了maxActive个jedis实例,则此时pool的状态为exhausted。 maxIdle:控制一个pool最多有多少个状态为idle(空闲)的jedis实例; whenExhaustedAction:表示当pool中的jedis实例都被allocated完时,pool要采取的操作;默认有三种。 WHEN_EXHAUSTED_FAIL --> 表示无jedis实例时,直接抛出NoSuchElementException; WHEN_EXHAUSTED_BLOCK --> 则表示阻塞住,或者达到maxWait时抛出JedisConnectionException; WHEN_EXHAUSTED_GROW --> 则表示新建一个jedis实例,也就说设置的maxActive无用; maxWait:表示当borrow一个jedis实例时,最大的等待时间,如果超过等待时间,则直接抛JedisConnectionException; testOnBorrow:获得一个jedis实例的时候是否检查连接可用性(ping());如果为true,则得到的jedis实例均是可用的; testOnReturn:return 一个jedis实例给pool时,是否检查连接可用性(ping()); testWhileIdle:如果为true,表示有一个idle object evitor线程对idle object进行扫描,如果validate失败,此object会被从pool中drop掉;这一项只有在timeBetweenEvictionRunsMillis大于0时才有意义; timeBetweenEvictionRunsMillis:表示idle object evitor两次扫描之间要sleep的毫秒数; numTestsPerEvictionRun:表示idle object evitor每次扫描的最多的对象数; minEvictableIdleTimeMillis:表示一个对象至少停留在idle状态的最短时间,然后才能被idle object evitor扫描并驱逐;这一项只有在timeBetweenEvictionRunsMillis大于0时才有意义; softMinEvictableIdleTimeMillis:在minEvictableIdleTimeMillis基础上,加入了至少minIdle个对象已经在pool里面了。如果为-1,evicted不会根据idle time驱逐任何对象。如果minEvictableIdleTimeMillis>0,则此项设置无意义,且只有在timeBetweenEvictionRunsMillis大于0时才有意义; lifo:borrowObject返回对象时,是采用DEFAULT_LIFO(last in first out,即类似cache的最频繁使用队列),如果为False,则表示FIFO队列; ================================================================================================================== 其中JedisPoolConfig对一些参数的默认设置如下: testWhileIdle=true minEvictableIdleTimeMills=60000 timeBetweenEvictionRunsMillis=30000 numTestsPerEvictionRun=-1