POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

本文探讨了在多个货币环境中,通过巧妙的货币兑换策略,帮助个人实现财富增长的可能性。通过对货币兑换点的分析,利用SPFA算法检测是否存在正环,从而判断是否能够通过一系列兑换操作,最终回到初始货币并实现盈利。
摘要由CSDN通过智能技术生成
Currency Exchange
Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u
Submit  Status  Practice  POJ 1860

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R  AB, C AB, R  BA and C  BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10  3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10  -2<=rate<=10  2, 0<=commission<=10  2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10  4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES


题目大意:给你n种货币,m种货币交换关系,交换率和手续费,给你起始的货币类型和金额,问你是否可以通过交换货币,最后回到起始的货币时能盈利。

解题思路:如果要盈利,只需要判断图中存不存在正环, 即可以一直让某种货币额度无限增加。由于是无向图,那么只要存在正环,那么我就可以最后转化成起始的货币且盈利。所以只要将SPFA判负环的条件变化一下就行。初始值时,让除原点之外的d数组都赋值为0。同时松弛条件变为d[e.to] < (d[e.from] - e.com)*e.rate。即可,最后判断当u为起点时的d[u]是否大于起始金额即可。


#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
#include<iostream>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1e3+200;
int n , m;
struct Edge{
    int from,to;
    double rate , com;
};
vector<Edge>edges;
vector<int>G[maxn];
void init(){
    for(int i = 0; i <= n; i++){
        G[i].clear();
    }
    edges.clear();
}
double d[maxn] ,cnt[maxn], inq[maxn];
void AddEdge(int u,int v,double r,double co){
    edges.push_back( (Edge){u,v,r,co} );
    m = edges.size();
    G[u].push_back(m-1);
}

bool SPFA(int s, double V){
    queue<int>Q;
    for(int i = 0; i <= n; i++){
        d[i] = 0;
    }
    d[s] = V;
    cnt[s] ++;
    inq[s] = 1;
    Q.push(s);
    while(!Q.empty()){
        int u = Q.front();
        Q.pop();
        if(u == s&& d[s] > V){
            return true;
        }
        inq[u] = 0;
        for(int i = 0; i < G[u].size(); i++){
            Edge & e = edges[G[u][i]];
            if(d[e.to] < (d[e.from] - e.com)*e.rate ){
                d[e.to ] = (d[e.from] - e.com) *e.rate;
                if(!inq[e.to]){
                    inq[e.to] = 1;
                    Q.push(e.to);
                }
            }
        }
    }
    return false;
}
int main(){
    int mm,s;
    double k;
    while(scanf("%d%d%d%lf",&n,&mm,&s,&k)!=EOF){
        int a,b;
        double c,d;
        for(int i = 0; i < mm; i++){
            scanf("%d%d%lf%lf",&a,&b,&c,&d);
            AddEdge(a,b,c,d);
            scanf("%lf%lf",&c,&d);
            AddEdge(b,a,c,d);
        }
        bool yes = SPFA(s,k);
        if(yes){
            puts("YES");
        }else{
            puts("NO");
        }
    }
    return 0;
}

  




转载于:https://www.cnblogs.com/chengsheng/p/4903388.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值