设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$
证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0. \eex$$ 于是 $$\bex ({\bf H}\cdot\n ){\bf H}=\sex{0,0,H_3\cfrac{\p H_3}{\p x_3}}^T={\bf 0}. \eex$$