414. Third Maximum Number

Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).

Example 1:

Input: [3, 2, 1]

 

Output: 1

 

Explanation: The third maximum is 1.

 

Example 2:

Input: [1, 2]

 

Output: 2

 

Explanation: The third maximum does not exist, so the maximum (2) is returned instead.

 

Example 3:

Input: [2, 2, 3, 1]

 

Output: 1

 

Explanation: Note that the third maximum here means the third maximum distinct number.

Both numbers with value 2 are both considered as second maximum.

 

 Solution 1: use three variants first,second,third to represent the  first,second,third maximum. Note that use long long type to solve the condition that INT_MIN exists in the array. (Line 4)

 

 1 class Solution {
 2 public:
 3     int thirdMax(vector<int>& nums) {
 4         long long first=LLONG_MIN, second=LLONG_MIN, third=LLONG_MIN; //
 5         for (int num:nums) {
 6             if (num>first) {
 7                 third=second;
 8                 second=first;
 9                 first=num;
10             }
11             else if (num<first && num>second){
12                 third=second;
13                 second=num;
14             }
15             else if (num<second && num>third){
16                 third=num;
17             }
18         }
19         return (third==LLONG_MIN)?first:third;
20     }
21 };

Solution 2: use the functions of set: ordering and including unique key. Set is implemented with red-black tree, the complexity of operation of insert  is O(log3) and erase is O(1), so the total complexity is O(n). 

 1 class Solution {
 2 public:
 3     int thirdMax(vector<int>& nums) {
 4         set<int> s;
 5         for (int num:nums){
 6             s.insert(num);
 7             if (s.size()>3){
 8                 s.erase(s.begin());
 9             }
10         }
11         return (s.size()<3)?*(s.rbegin()):*s.begin();
12     }
13 };

 

转载于:https://www.cnblogs.com/anghostcici/p/6668655.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值