机器学习(课程笔记4)——逼近参数算法牛顿方法;

一.牛顿法(Newton's method)

上一节学习了一种二分类算法logistic regression,其中涉及到求likelihood function中的参数使$l(\theta)$maxmizing。当时用的是梯度上升(grdient ascent)方法。现在介绍一种对logistic regression收敛更快的算法。使用Newton's method 对假设函数是有要求的,假设函数要满足一系列的条件。

  一.函数  f  find  $\theta\in\Re$ st.  $f(\theta)=0$的$\theta$,

有$\theta^{(1)}=\theta^{(0)}-\Delta=\theta^{(0)}-\frac{f(\theta^{(0)})}{f'(\theta^{(0)})}$

推广为:$\theta^{(t+1)}=\theta^{(t)}-\frac{f(\theta^{(t)})}{f'(\theta^{(t)})}$

  二.当 $l(\theta)$   want  $\theta$  st. $l'(\theta)=0$

有$\theta^{(t+1)}=\theta^{(t)}-\frac{f'(\theta^{(t)})}{f''(\theta^{(t)})}$

  三.$\theta$是向量时,推广为,

$\theta^{(t+1)}=\theta^{(t)}-H^{-1}\nabla_\theta{l(\theta)}$

      ,$\nabla_\theta{l(\theta)}$是l($\theta$)对$\theta_i$的导数,H为n*n的Hessian矩阵(二阶偏导),n为$\theta$的维数。当然牛顿法的计算代价因为求逆是比较大的,实际上在n不是太大时牛顿法仍是很快的。


 二.指数族分布(exponential family distribution)

  前面利用高斯分布(概率推导一节)导出了最小二乘,用伯努利分布导出了logistics regression。这两个分布都属于指数族分布,常见的如泊松分布,都是指数族分布。

  1. 在回归的例子中,经过假设随机噪声为高斯分布后,得到$y|x;\theta\sim\mathcal{N}(\mu,\sigma^2)$
    $P(y^{(i)}|x^{(i)};\theta)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2})$;在上一节的证明中$
    \sigma^2$是不影响$\theta$的最小值的。
  2. in classification example,二分类模型为$P(y|x;\theta)$~Bernoulli($\Phi$)
  3. $\mu,\Phi$是$\theta和x$的函数。

   如果一种分布可以写成如下形式,就称它是指数族分布,

                 证明一:Bernoulli是指数族分布(近似定义$\Phi$是$\theta$的函数)

  它和sigmoid函数相似

              证明二:Gaussion是指数族分布(选择任意的$\sigma^2$不会改变$h_{\theta}(x)$)的值,即假设$\sigma^2=1,\mu是\theta的函数$

 

 

 


 

三.

广义线性模型(GLM-generalized linear models)

构造GLM

 

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/g6z3z/p/9268647.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值