斯坦纳树

斯坦纳树是一类图上NP问题,数据范围小的时候我们可以将其转化为状态压缩动态规划问题,内容大致是给定一副图和一个点集P,要求你选出一些点(或边)是整个点集连通,同时最小化你所选的点权(边权)和。
我们将点权问题和边权问题分开考虑,实际上本质是一样的。

对于边权问题,设$f[x][S]$为将S以及x连通的最小代价。
这样我们有两个DP式:$$dp_{x,S}=min\{dp_{y,S'}+w(x,y)\}$$ $$dp_{x,S}=min\{dp_{x,S},dp_{x,T}+dp_{x,S-T}\}$$
第二个式子可以直接通过枚举子集完成。方法是: for (int s=(S-1)&S; s; s=(s-1)&S)
第一个式子因为拓扑顺序不明确所以使用SPFA完成。
这里理论上要注意两个问题,一个是$x \in S \bigcup (V \backslash P)$,因为如果$x \in P$则必然$x \in S$,还有一个是SPFA时如果S'!=S则不再将S'入队,因为这个状态下一次处理S'时一定会被考虑到。
实际上这两个问题都不需要特殊处理,第一个问题可以直接x从1到n枚举,第二个问题将松弛式直接写成$if\ dp_{k,S}>dp_{x,S}+w(x,k)\ then\ upd(dp_{k,S})$ 即可。

斯坦纳树DP复杂度$O(3^{k}n+2^{k}n \log n)$

 

4774: 修路

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 343  Solved: 165
[Submit][Status][Discuss]

Description

村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路。对于边带权的无向图 G = (V, E),
请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边
的权值和。

Input

第一行两个整数 n, m,表示图的点数和边数。接下来的 m行,每行三个整数 ui, vi, wi,表示有一条 ui 与 vi 
之间,权值为 wi 的无向边。
1 <= d <= 4
2d <= n <= 10^4
0 <= m <= 10^4
1 <= ui, vi <= n
1 <= wi <= 1000

Output

一行一个整数,表示答案,如果无解输出-1

Sample Input

10 20 1
6 5 1
6 9 4
9 4 2
9 4 10
6 1 2
2 3 6
7 6 10
5 7 1
9 7 2
5 9 10
1 6 8
4 7 4
5 7 1
2 6 9
10 10 6
8 7 2
10 9 10
1 2 4
10 1 8
9 9 7

Sample Output

8

HINT

Source

这道题是边权问题的裸题,直接套用DP式即可。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<queue>
 4 #include<cstring>
 5 #define rep(i,l,r) for (int i=l; i<=r; i++)
 6 using namespace std;
 7 
 8 const int N=20010;
 9 int n,m,d,x,y,z,inf,cnt,to[N],nxt[N],val[N],h[N],f[N][260],g[260],vis[N];
10 queue<int> Q;
11 
12 void add(int u,int v,int w){ nxt[++cnt]=h[u]; h[u]=cnt; to[cnt]=v; val[cnt]=w; }
13 
14 void spfa(int S){
15     rep(i,1,n) if (f[i][S]<inf) Q.push(i);
16     while (!Q.empty()){
17         int x=Q.front(); Q.pop(); vis[x]=0;
18         for (int i=h[x],k; i; i=nxt[i])
19             if (f[k=to[i]][S]>f[x][S]+val[i]){
20                 f[k][S]=f[x][S]+val[i];
21                 if (!vis[k]) vis[k]=1,Q.push(k);
22             }
23     }
24 }
25 
26 bool check(int S){
27     rep(i,0,d-1) if ((S>>i)&1 && !((S>>(d+i))&1)) return 0;
28     return 1;
29 }
30 
31 int main(){
32     freopen("bzoj4774.in","r",stdin);
33     freopen("bzoj4774.out","w",stdout);
34     scanf("%d%d%d",&n,&m,&d);
35     rep(i,1,m) scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
36     memset(f,0x3f,sizeof(f)); memset(g,0x3f,sizeof(g)); inf=f[0][0];
37     rep(i,1,d) f[i][1<<(i-1)]=0,f[n-i+1][1<<(d+i-1)]=0;
38     rep(S,0,(1<<(d+d))-1){
39         rep(i,1,n) for (int s=(S-1)&S; s; s=(s-1)&S) f[i][S]=min(f[i][S],f[i][s]+f[i][S-s]);
40         spfa(S); rep(i,1,n) g[S]=min(g[S],f[i][S]);
41     }
42     rep(S,0,(1<<(d+d))-1)
43         for (int s=(S-1)&S; s; s=(s-1)&S)
44             if (check(s) && check(S-s)) g[S]=min(g[S],g[s]+g[S-s]);
45     if (g[(1<<(d+d))-1]<inf) printf("%d\n",g[(1<<(d+d))-1]); else puts("-1");
46     return 0;
47 }


对于点权问题基本上是一样的处理方法,只不过将DP方程改为$$dp_{x,S}=min\{dp_{y,S'}+v[x]\}$$ $$dp_{x,S}=min\{dp_{x,S},dp_{x,T}+dp_{x,S-T}-v[x]\}$$

 

2595: [Wc2008]游览计划

Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special Judge
Submit: 1935  Solved: 946
[Submit][Status][Discuss]

Description

Input

第一行有两个整数,N和 M,描述方块的数目。
接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个景点;
否则表示控制该方块至少需要的志愿者数目。 相邻的整数用 (若干个) 空格隔开,
行首行末也可能有多余的空格。

Output


由 N + 1行组成。第一行为一个整数,表示你所给出的方案
中安排的志愿者总数目。
接下来 N行,每行M 个字符,描述方案中相应方块的情况:
z  ‘_’(下划线)表示该方块没有安排志愿者;
z  ‘o’(小写英文字母o)表示该方块安排了志愿者;
z  ‘x’(小写英文字母x)表示该方块是一个景点;
注:请注意输出格式要求,如果缺少某一行或者某一行的字符数目和要求不
一致(任何一行中,多余的空格都不允许出现) ,都可能导致该测试点不得分。

Sample Input

4 4
0 1 1 0
2 5 5 1
1 5 5 1
0 1 1 0



Sample Output

6
xoox
___o
___o
xoox

HINT

 对于100%的数据,N,M,K≤10,其中K为景点的数目。输入的所有整数均在[0,2^16]的范围内

Source

[ Submit][ Status][ Discuss]


这一题同样只要套用DP式即可,据说也可以用插头DP。

 1 #include<cstdio>
 2 #include<queue>
 3 #include<cstring>
 4 #include<algorithm>
 5 #define pii pair<int,int>
 6 #define MP make_pair
 7 #define fir first
 8 #define sec second
 9 #define rep(i,l,r) for (int i=l; i<=r; i++)
10 using namespace std;
11 
12 const int N=12,S=(1<<10)+5,inf=1000000000;
13 int n,m,k,x,y,flag,a[N][N],f[N][N][S];
14 bool vis[N][N],inq[N][N];
15 struct Path{
16      int i,j,s;
17      Path(int a=0,int b=0,int c=0):i(a),j(b),s(c){}
18 }pre[N][N][S];
19 queue<pii> Q;
20 int dx[4]={1,-1,0,0},dy[4]={0,0,1,-1};
21 
22 void spfa(int S){
23     while (!Q.empty()){
24         int x=Q.front().fir,y=Q.front().sec;
25         inq[x][y]=0; Q.pop();
26         rep(k,0,3){
27             int i=x+dx[k],j=y+dy[k];
28             if (i<1 || i>n || j<1 || j>m) continue;
29             if (f[i][j][S]>f[x][y][S]+a[i][j]){
30                 f[i][j][S]=f[x][y][S]+a[i][j]; pre[i][j][S]=Path(x,y,S);
31                 if (!inq[i][j]) Q.push(MP(i,j)),inq[i][j]=1;
32             }
33         }
34     }
35 }
36 
37 void dfs(int x,int y,int S){
38     vis[x][y]=1; Path t=pre[x][y][S];
39     if (!t.i && !t.j) return;
40     dfs(t.i,t.j,t.s);
41     if (t.i==x && t.j==y) dfs(t.i,t.j,S-t.s);
42 }
43 
44 int main(){
45     freopen("bzoj2595.in","r",stdin);
46     freopen("bzoj2595.out","w",stdout);
47     scanf("%d%d",&n,&m); memset(f,0x3f,sizeof(f));
48     rep(i,1,n) rep(j,1,m){
49         scanf("%d",&a[i][j]);
50         if (!a[i][j]) f[i][j][1<<k]=0,k++;
51     }
52     int All=1<<k;
53     for(int S=0; S<All; S++){
54         rep(i,1,n) rep(j,1,m){
55             for(int s=S&(S-1); s; s=S&(s-1)){
56                 int t=f[i][j][s]+f[i][j][S-s]-a[i][j];
57                 if(t<f[i][j][S]) f[i][j][S]=t,pre[i][j][S]=Path(i,j,s);
58             }
59             if(f[i][j][S]<inf) Q.push(MP(i,j)),inq[i][j]=1;
60         }
61         spfa(S);
62     }
63     for (int i=1; i<=n && !flag; i++)
64         rep(j,1,m) if (!a[i][j]) { x=i; y=j; flag=1; break; }
65     dfs(x,y,All-1); printf("%d\n",f[x][y][All-1]);
66     rep(i,1,n){
67         rep(j,1,m){
68             if(a[i][j]==0) putchar('x');
69                 else if(vis[i][j]) putchar('o');
70             else putchar('_');
71         }
72         puts("");
73     }
74     return 0;
75 }

 

转载于:https://www.cnblogs.com/HocRiser/p/8454024.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python实现最小斯坦纳树的代码可以使用Prim算法来解决。具体实现如下: ```python import sys # 为了方便表示图的邻接矩阵,使用无穷大代表不可达 inf = sys.maxsize def prim(graph): num_vertices = len(graph) key = [inf] * num_vertices # 记录顶点到最小生成树的最小权值边 parent = [None] * num_vertices # 记录最小生成树中顶点的父节点 visited = [False] * num_vertices # 记录顶点是否已访问 # 将第一个顶点设为起始顶点 key[0] = 0 for _ in range(num_vertices): # 找到未访问的顶点中键值最小的顶点 min_key = inf min_vertex = None for v in range(num_vertices): if not visited[v] and key[v] < min_key: min_key = key[v] min_vertex = v # 将找到的顶点标记为已访问 visited[min_vertex] = True # 更新顶点的最小权值边和父节点 for v in range(num_vertices): if not visited[v] and graph[min_vertex][v] < key[v]: key[v] = graph[min_vertex][v] parent[v] = min_vertex return parent def min_steiner_tree(graph, terminals): num_terminals = len(terminals) # 构建终端间的最短路径图 shortest_paths = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): shortest_paths[i][j] = dijkstra(graph, terminals[i], terminals[j]) # 在最短路径图上生成最小斯坦纳树 steiner_tree = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): if i == j: steiner_tree[i][j] = 0 else: for k in range(num_terminals): steiner_tree[i][j] = min(steiner_tree[i][j], shortest_paths[i][k] + shortest_paths[k][j]) # 使用Prim算法生成最小生成树 parent = prim(steiner_tree) return parent # 测试代码 graph = [[0, 7, 9, inf, inf, 14], [7, 0, 10, 15, inf, inf], [9, 10, 0, 11, inf, 2], [inf, 15, 11, 0, 6, inf], [inf, inf, inf, 6, 0, 9], [14, inf, 2, inf, 9, 0]] terminals = [0, 2, 4] parent = min_steiner_tree(graph, terminals) print(parent) ``` 此代码是使用Prim算法在最短路径图上生成最小斯坦纳树。输入的图是一个邻接矩阵,其中inf表示顶点之间不可达。terminals是终端节点的列表。输出是一个列表,表示每个顶点在生成的最小斯坦纳树中的父节点。 ### 回答2: Python实现最小斯坦纳树的代码可以使用图的最小生成树算法和动态规划的思想。 首先,我们可以使用Prim算法或Kruskal算法找到图的最小生成树,即连接所有顶点的最小权重的子图。 接下来,对于每一条边,我们通过遍历所有顶点集合的子集来找到最小斯坦纳树。子集的大小从1开始递增,直到包含所有顶点为止。 对于每个子集,我们通过动态规划的方法来找到连接子集中所有顶点的最小权重的边。 具体的实现步骤如下: 1. 使用Prim算法或Kruskal算法找到图的最小生成树,并保存最小生成树的边集合。 2. 对于每条边e in 最小生成树的边集合: 2.1 对于每个顶点集合V'(从1个元素开始递增到总顶点数): 2.1.1 如果V'包含边e的两个顶点,则忽略该顶点集合。 2.1.2 否则,遍历V'的所有子集V'': 2.1.2.1 如果V''中不包含边e的两个顶点,则忽略该子集。 2.1.2.2 否则,计算通过V''中的顶点连接边e的权重和,并更新最小权重值和对应的边。 3. 最后得到的最小权重值和对应的边即为最小斯坦纳树的结果。 以下是一个简单的Python代码示例: ```python import math def minimum_steiner_tree(graph): n = len(graph) inf = float('inf') dp = [[inf] * n for _ in range(1 << n)] for v in range(n): dp[1 << v][v] = 0 for S in range(1 << n): for v in range(n): for u in range(n): dp[S | (1 << u)][u] = min(dp[S | (1 << u)][u], dp[S][v] + graph[v][u]) return min(dp[-1]) # 测试代码 graph = [[0, 2, 3, math.inf], [2, 0, 1, 3], [3, 1, 0, 2], [math.inf, 3, 2, 0]] result = minimum_steiner_tree(graph) print("最小斯坦纳树的权重为:", result) ``` 权重矩阵graph表示的是无向图的邻接矩阵,math.inf表示无穷大,表示两个顶点之间没有边。代码中的结果为最小斯坦纳树的权重。 ### 回答3: Python最小斯坦纳树的代码可以通过使用Dijkstra算法和回溯法来实现。以下是一个可能的实现: ```python import sys def dijkstra(graph, src): n = len(graph) dist = [sys.maxsize] * n dist[src] = 0 visited = [False] * n for _ in range(n): u = min_distance(dist, visited) visited[u] = True for v in range(n): if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]: dist[v] = dist[u] + graph[u][v] return dist def min_distance(dist, visited): min_dist = sys.maxsize min_index = -1 for v in range(len(dist)): if not visited[v] and dist[v] < min_dist: min_dist = dist[v] min_index = v return min_index def tsp_solver(graph, start): n = len(graph) tsp_path = None tsp_cost = sys.maxsize def tsp_recursion(curr_node, visited, current_path, current_cost): nonlocal tsp_path, tsp_cost if len(visited) == n: if graph[curr_node][start] > 0: current_cost += graph[curr_node][start] current_path.append(start) if current_cost < tsp_cost: tsp_cost = current_cost tsp_path = current_path.copy() current_path.pop() current_cost -= graph[curr_node][start] return for next_node in range(n): if next_node not in visited: new_path = current_path.copy() new_path.append(next_node) tsp_recursion(next_node, visited + [next_node], new_path, current_cost + graph[curr_node][next_node]) tsp_recursion(start, [start], [start], 0) return tsp_path, tsp_cost def min_steiner_tree(graph, terminals): n = len(graph) t = len(terminals) dp = [[sys.maxsize] * t for _ in range(1 << t)] # 动态规划表格 path = [[None] * t for _ in range(1 << t)] # 记录路径 for i in range(t): dist = dijkstra(graph, terminals[i]) for j in range(t): dp[1 << i][j] = dist[terminals[j]] for i in range(1 << t): for j in range(t): if dp[i][j] == sys.maxsize: continue for k in range(t): if (i >> k) & 1 == 0 and dp[i][j] + dp[1 << k | i][k] < dp[1 << k | i][k]: dp[1 << k | i][k] = dp[i][j] + dp[1 << k | i][k] path[1 << k | i][k] = j min_cost = sys.maxsize min_path = None for i in range(t): if dp[(1 << t) - 1][i] < min_cost: min_cost = dp[(1 << t) - 1][i] min_path = [i] while len(min_path) < t: last_node = min_path[-1] min_path.append(path[(1 << t) - 1][last_node]) min_path = [terminals[i] for i in min_path] tsp_path, tsp_cost = tsp_solver(graph, terminals[0]) min_cost += tsp_cost min_path += tsp_path[1:] return min_path, min_cost # 测试例子 graph = [ [0, 2, 3, 0, 0], [2, 0, 0, 4, 0], [3, 0, 0, 1, 3], [0, 4, 1, 0, 2], [0, 0, 3, 2, 0] ] terminals = [1, 2, 3] path, cost = min_steiner_tree(graph, terminals) print("最小斯坦纳树路径:", path) print("最小斯坦纳树总成本:", cost) ``` 这段代码通过调用`min_steiner_tree`函数来计算给定图和终端点集合的最小斯坦纳树的路径和成本。`graph`代表图的邻接矩阵,`terminals`代表终端点的列表。最后将得到的最小斯坦纳树路径和成本打印出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值