暴力破解是一种基础算法,一半只涉及循环及基本运算。
3层for循环寻找1000内可构成的平方数
#include<stdio.h>
int main()
{
int i,a,b;
for(i=1;i<10;i++)
{
for(b=1;b<10;b++)
{
for(a=1;a<10;a++)
if(b*b+i*i==a*a)
{
printf("b=%d i=%d a=%d\n",b,i,a);
}
}
}
}
找水仙数
#include<stdio.h>
int main()
{
int i,a,b,n;
for(i=1;i<1000;i++)
{
for(b=1;b<1000;b++)
{
for(a=1;a<1000;a++)
{
n=i*100+a*10+b;
if((i*100+a*10+b)==((i*i*i)+(a*a*a)+(b*b*b)))
printf("水仙花数为:%d i=%d i=%d i=%d\n",n,i,a,b);
}
}
}
}
生日蜡烛
某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了236根蜡烛。
请问,他从多少岁开始过生日party的?
请填写他开始过生日party的年龄数。
同样使用3层for循环暴力破解
#include<stdio.h>
int main()
{
int s,e;
for(s=1;s<236;s++) //两次循环暴力破解 ,遍历s和e ,
{
for(e=s;e<236;e++)
{
int sum=0,i;
for(i=s;i<=e;i++) // sum为i的和,输出为e,终止
sum=sum+i;
if(sum==236) //sun为236,跳出。
{
printf("start:%d end:%d\n",s,e);
}
}
}
return 0;
}
甚至可以采用9次循环暴力破解
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int a[13];
static int count;
int ans = 0;
for(a[0]=0; a[0]<=4; a[0]++)
{
for(a[1]=0; a[1]<=4; a[1]++)
{
for(a[2]=0; a[2]<=4; a[2]++)
{
for(a[3]=0; a[3]<=4; a[3]++)
{
for(a[4]=0; a[4]<=4; a[4]++)
{
for(a[5]=0; a[5]<=4; a[5]++)
{
for(a[6]=0; a[6]<=4; a[6]++)
{
for(a[7]=0; a[7]<=4; a[7]++)
{
for(a[8]=0; a[8]<=4; a[8]++)
{
for(a[9]=0; a[9]<=4; a[9]++)
{
for(a[10]=0; a[10]<=4; a[10]++)
{
for(a[11]=0; a[11]<=4; a[11]++)
{
for(a[12]=0; a[12]<=4; a[12]++)
{
if(a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10]+a[11]+a[12]==13)
{
count++;
ans = count;
}
}
}
}
}
}
}
}
}
}
}
}
}
}
cout<<ans<<endl;
return 0;
}