立通信电杆——水泥杆

通信电杆——水泥杆

1、工程使用环形预应力钢筋混凝土电杆,杆高分别为7891012米,按设计要求选用,梢径15cm,电杆壁厚4cm,锥度1/75

      2、电杆表面应光滑、平直,不应有麻面、裂缝、脱皮、锈斑和露筋等现象;

      3、电杆内表面不应有塌落或锈筋现象,电杆根部断面平整,杆顶封闭,不露钢筋;

      4、电杆有下列情况之一者,不得用:

[1] 环向裂缝宽度超过0.5mm

[2] 有可见纵向裂缝;

[3] 混凝土破碎部分总面积超过200平方毫米。

[4] 发现电杆底部有破损,严禁使用到工程中。

 

人工立杆安全要点:

    1)劳动组织合理,人员配备充足(按人均负重50kg考虑),熟练工应占半数以上;

    2)在挖杆坑洞时,应调查地下原有电力线、光()缆、煤气管、输水管、供热管、排污管等设施与开挖地段的间距并注意其安全;

    3)杆洞应开足够深、足够长的马槽(斜槽),特别是地形不利时;

    4)绳索、杆叉等工具配备齐全,牢固安全,不准用铁锹等工具替代;

    5)扛杆人员应用同一肩膀,便于遇险时躲闪;不准用汽车、拖拉机等拉绳立杆。

6)根据高寒地区气候特点,立杆档距在50米以内, 部分中继段所处高寒地段, 杆距要求每档在40米以下。

7)、杆立起至30o角时应使用杆叉(夹杠)、牵引绳等助力。拉动牵引绳应用力均匀,面对电杆操作,保持平稳,严禁作业人员背向电杆拉牵引绳。杆叉操作者用力要均衡,配合发挥杆叉支撑、夹拉作用。电杆不得左右摇摆,应保持平稳。

8)、电杆立起后应按要求校正杆根、杆梢位置,并及时回填土、夯实。夯实后方能撤除杆叉及登杆摘除牵引绳。

9)、严禁在电力线路正下方(尤其是高压线路下)立杆作业。当架空的通信线路穿过输电线时,经测量、计算吊线与高压输电线达不到安全净距时,则必须修改通信线路设计,必要时可改为由地下通过。

 

 

 

 

通信杆路工程——地锚

一般情况下,新建杆在杆上线路方向发生改变的情况,需要给杆添加地锚。

1)地锚出土方位必须经测量确定。出土方向允许偏差:承力拉线±5cm,非承力拉线±10cm。   

  2)拉线程式与拉线盘、地锚钢柄及埋深的配套关系:

拉线

     拉线盘

  地锚钢柄

埋深(普通土) 

   7/2.2 

     500*300*150 

    Φ16*2100 

        1.3

   7/2.6 

     600*400*150 

    Φ16*2100 

        1.4

   7/3.0 

     600*400*150 

    Φ20*2100 

        1.5

 

3)地锚柄出土长度为30cm,允许偏差5~10cm

4)地锚出土应开马槽(斜槽),使地锚柄与拉线成一条直线。

5)地锚洞回填前应将积水、淤泥掏干,回填干土,每30cm分层夯实。

转载于:https://www.cnblogs.com/lanchang/p/11225313.html

数据集概述 本数据集用于情感分析,主要针对Yelp评论,通过比较两种先进的模型——Hugging Face的bert-base-multilingual-uncased和cardiffnlp/twitter-roberta-base-sentiment-latest来分析评论中的情感表达。 模型使用 BERT Multilingual Uncased: 适用于理解多种语言,特别适合处理Yelp评论中多样化的语言特性。 Twitter RoBERTa: 专门针对情感分析进行微调,擅长理解英语情感的细微差别。 构建方式 Yelp Reviews Dataset的构建基于Yelp平台上用户提交的评论数据。该数据集通过爬虫技术从Yelp网站上抓取,涵盖了多个国家和地区的餐厅、服务和商品的评论。数据收集过程中,确保了评论的完整性和真实性,同时对文本进行了预处理,包括去除HTML标签、特殊字符和停用词,以保证数据的质量和可用性。 特点 Yelp Reviews Dataset的特点在于其广泛的地理覆盖和多样化的评论内容。数据集包含了数百万条评论,涵盖了从星级评价到详细文本反馈的多种信息形式。此外,该数据集还提供了用户、商家和评论之间的关联信息,使得研究者可以进行多维度的分析。评论的情感倾向和语言风格也为自然语言处理和情感分析提供了丰富的素材。 使用方法 Yelp Reviews Dataset可用于多种研究目的,包括但不限于情感分析、用户行为研究、推荐系统构建和市场分析。研究者可以通过分析评论文本,提取用户的情感倾向和偏好,进而优化推荐算法或改进服务质量。此外,该数据集还可用于训练和验证自然语言处理模型,如情感分类器和文本生成模型。使用时,建议根据具体研究需求选择合适的子集和特征进行分析。 背景与挑战 背景概述 Yelp Reviews Dataset,作为在线评论平台Yelp的核心
本项目旨在开发一个基于Python的卷积神经网络(CNN)人脸识别系统,用于检测驾驶员的疲劳状态并及时发出预警。该系统主要通过分析驾驶员的面部特征,如打哈欠、眨眼和点头等行为,来判断驾驶员是否处于疲劳状态,从而提高驾驶安全性。 开发环境 IDE: PyCharm 编程语言: Python 3.6 算法: 卷积神经网络(CNN) 系统功能 本系统主要分为三个部分: 打哈欠检测:通过检测驾驶员的嘴巴张合程度来判断是否打哈欠。 眨眼检测:通过分析驾驶员的眼睛开合度和眨眼频率来判断是否疲劳。 点头检测:通过检测驾驶员的头部姿态变化来判断是否疲劳。 疲劳检测原理 人在疲倦时通常会出现以下两种状态: 眨眼:正常情况下,人的眼睛每分钟大约会眨动10-15次,每次眨眼大约0.2-0.4秒。当人疲劳时,眨眼次数会增加,速度也会变慢。 打哈欠:疲劳时,人的嘴巴会张大并保持一定状态。 因此,通过检测眼睛的开合度、眨眼频率以及嘴巴的张合程度,可以判断一个人是否处于疲劳状态。 检测工具 本项目使用dlib库进行人脸检测和关键点定位。shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的模型库,能够方便地进行人脸检测和应用。 眨眼计算原理 计算眼睛的宽高比(Eye Aspect Ratio, EAR)是判断眨眼状态的关键。当人眼睁开时,EAR值较大;当人眼闭合时,EAR值较小。通过实时计算EAR值的变化,可以判断驾驶员是否在眨眼。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值