Grassmann点的理解

Grassmann流形\(\mathcal{G}_{D,m}\)上的点,可以看成是所有\(\mathbb{R}^d\)上m维的子空间的集合,每个表示为大小为d*m的正交矩阵。

\(\mathcal{G}_{d,m}\)上的两点是等价的,如果其中一个点可以通过一个m*m的正交阵映射到另一个点。

因此Grass分析给与了一个自然的方式去处理图像集匹配问题。具体来说,\(\mathcal{G}_{d,m}\)是一个流形,参数化\(\mathbb{R}^d\)的m维实向量子空间。

匹配集合的分类问题包括m幅图像,每幅图像看成有D个像素点,因此可以看成一个\(\mathcal{G}_{d,m}\)的点分类问题。

 

也就是grass流形是用来度量集合的,而不是普通的向量分类。

 

转载于:https://www.cnblogs.com/jumanggege/p/10598834.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值