由于卡常,这个题变成了权限题。。。
本蒟蒻表示没钱氪金。。。
这里附上洛谷的题面:
题目描述
此时己是凌晨两点,刚刚做了Codeforces的小A掏出了英语试卷。英语作业其实不算多,一个小时刚好可以做完。然后是一个小时可以做完的数学作业,接下来是分别都是一个小时可以做完的化学,物理,语文......小A压力巨大。
这是小A碰见了一道非常恶心的数学题,给定了一个长度为n的数列和若干个询问,每个询问是关于数列的区间表示数列的第l个数到第r个数),首先你要统计该区间内大于等于a,小于等于b的数的个数,其次是所有大于等于a,小于等于b的,且在该区间中出现过的数值的个数。
小A望着那数万的数据规模几乎绝望,只能向大神您求救,请您帮帮他吧。
输入输出格式
输入格式:
第一行n,m
接下来n个数表示数列
接下来m行,每行四个数l,r,a,b
输出格式:
输出m行,分别对应每个询问,输出两个数,分别为在l到r这段区间中大小在[a,b]中的数的个数,以及大于等于a,小于等于b的,且在该区间中出现过的数值的个数(具体可以参考样例)。
输入输出样例
说明
N<=100000,M<=100000
题解Here!
第一问显然一个主席树就没了。。。
关键是第二问。
看到权值的个数,我们想起了区间神器——莫队!
于是一发莫队就好了。
但是那个$[a,b]$的限制怎么办?
没事,我们开一个权值线段树就好。
第一次加入某权值时加个$1$,最后一次删除某权值时减个$1$就好。
但是线段树常数太大怎么办?
我们可以用权值树状数组代替。
虽然复杂度是$O(n\sqrt n\log_2n)$,但是至少比线段树常数小。
网上一堆莫队+分块然后$O(n\sqrt n)$的算法。
但是我第一问用主席树算是为第二问争取了不小的时间。。。
然后就可以过了。
注意:记得离散化。
当然这个题好像不离散化也可以。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define MAXN 100010
using namespace std;
int n,m,q,block;
int val[MAXN],lsh[MAXN*3],root[MAXN],num[MAXN];
int ans_one[MAXN],ans_two[MAXN];
struct Question{
int l,r,a,b,id;
friend bool operator <(const Question &p,const Question &q){
return (p.r/block==q.r/block?(((p.r/block)&1)?p.l>q.l:p.l<q.l):p.r<q.r);
}
}que[MAXN];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
namespace BIT{
int bit[MAXN];
inline int lowbit(int x){return x&(-x);}
inline void add(int x,int v){for(;x<=n;x+=lowbit(x))bit[x]+=v;}
inline int sum(int x){int s=0;for(;x;x-=lowbit(x))s+=bit[x];return s;}
}
namespace CT{
int size=0;
struct Chairman_Tree{
int sum,l,r;
}a[MAXN*19];
inline void buildtree(){
root[0]=a[0].sum=a[0].l=a[0].r=0;
}
void insert(int k,int l,int r,int &rt){
a[++size]=a[rt];rt=size;
a[rt].sum++;
if(l==r)return;
int mid=l+r>>1;
if(k<=mid)insert(k,l,mid,a[rt].l);
else insert(k,mid+1,r,a[rt].r);
}
int query(int i,int j,int l,int r,int lside,int rside){
int ans=0;
if(l<=lside&&rside<=r)return a[j].sum-a[i].sum;
int mid=lside+rside>>1;
if(l<=mid)ans+=query(a[i].l,a[j].l,l,r,lside,mid);
if(mid<r)ans+=query(a[i].r,a[j].r,l,r,mid+1,rside);
return ans;
}
}
inline void add(int x){
if(!num[x])BIT::add(x,1);
num[x]++;
}
inline void del(int x){
num[x]--;
if(!num[x])BIT::add(x,-1);
}
void work(){
int left=1,right=0;
for(int i=1;i<=m;i++){
while(left<que[i].l)del(val[left++]);
while(left>que[i].l)add(val[--left]);
while(right<que[i].r)add(val[++right]);
while(right>que[i].r)del(val[right--]);
ans_two[que[i].id]=BIT::sum(que[i].b)-BIT::sum(que[i].a-1);
}
for(int i=1;i<=m;i++)printf("%d %d\n",ans_one[i],ans_two[i]);
}
void init(){
n=read();m=read();
for(int i=1;i<=n;i++)val[i]=lsh[i]=read();
q=n;
CT::buildtree();
block=sqrt(n);
for(int i=1;i<=m;i++){
que[i].l=read();que[i].r=read();que[i].a=read();que[i].b=read();
que[i].id=i;
lsh[++q]=que[i].a;lsh[++q]=que[i].b;
}
sort(lsh+1,lsh+q+1);
q=unique(lsh+1,lsh+q+1)-lsh-1;
for(int i=1;i<=n;i++){
root[i]=root[i-1];
val[i]=lower_bound(lsh+1,lsh+q+1,val[i])-lsh;
num[val[i]]=0;
CT::insert(val[i],1,q,root[i]);
}
for(int i=1;i<=m;i++){
que[i].a=lower_bound(lsh+1,lsh+q+1,que[i].a)-lsh;
que[i].b=lower_bound(lsh+1,lsh+q+1,que[i].b)-lsh;
ans_one[i]=CT::query(root[que[i].l-1],root[que[i].r],que[i].a,que[i].b,1,q);
}
sort(que+1,que+m+1);
}
int main(){
init();
work();
return 0;
}