gcd和拓展gcd算法

gcd算法是用来求两个数最大公约数的算法,他是依靠辗转相除(中国好像叫辗转相减)法来求两个数的最大公约数,别的地方也有很多介绍不做过多赘述,主要提供代码供自己参考。

gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}

对于拓展gcd,是对方程ax+by=c求解;

就是a mod b=c这个方程求解;

具体看代码,不做过多赘述因为别人已经讲的很详细了,在这里copy一下别人的讲解:

我们其实只需要考虑形如 a • x mod n = 1 的方程。因为,如果能解出这样的方程, a • x mod n = 2 、 a • x mod n = 3 也都自动地获解了。假如 a • x mod n = 1 有一个解 x = 100 ,由于 100 个 a 除以 n 余 1 ,自然 200 个 a 除以 n 就余 2 , 300 个 a 除以 n 就余 3 ,等等,等式右边余数不为 1 的方程也都解开了。

让我们尝试求解 115x mod 367 = 1 。注意,由于 115 和 367 是互质的,因此方程确实有解。我们解方程的基本思路是,不断寻找 115 的某个倍数以及 367 的某个倍数,使得它们之间的差越来越小,直到最终变为 1 。由于 367 除以 115 得 3 ,余 22 ,因而 3 个 115 只比 367 少 22 。于是, 15 个 115 就要比 5 个 367 少 110 ,从而 16 个 115 就会比 5 个 367 多 5 。好了,真正巧妙的就在这里了: 16 个 115 比 5 个 367 多 5 ,但 3 个 115 比 1 个 367 少 22 ,两者结合起来,我们便能找到 115 的某个倍数和 367 的某个倍数,它们只相差 2 : 16 个 115 比 5 个 367 多 5 ,说明 64 个 115 比 20 个 367 多 20 ,又考虑到 3 个 115 比 1 个 367 少 22 ,于是 67 个 115 只比 21 个 367 少 2 。现在,结合“少 2 ”和“多 5 ”两个式子,我们就能把差距缩小到 1 了: 67 个 115 比 21 个 367 少 2 ,说明 134 个 115 比 42 个 367 少 4 ,而 16 个 115 比 5 个 367 多 5 ,于是 150 个 115 比 47 个 367 多 1 。这样,我们就解出了一个满足 115x mod 367 = 1 的 x ,即 x = 150 。大家会发现,在求解过程,我们相当于对 115 和 367 做了一遍辗转相除:我们不断给出 115 的某个倍数和 367 的某个倍数,通过辗转对比最近的两个结果,让它们的差距从“少 22 ”缩小到“多 5 ”,再到“少 2 ”、“多 1 ”,其中 22, 5, 2, 1 这几个数正是用辗转相除法求 115 和 367 的最大公约数时将会经历的数。因而,算法的步骤数仍然是对数级别的,即使面对上百位上千位的大数,计算机也毫无压力。这种求解方程 a • x mod n = b 的算法就叫做“扩展的辗转相除法”。

注意,整个算法有时也会以“少 1 ”的形式告终。例如,用此方法求解 128x mod 367 = 1 时,最后会得出 43 个 128 比 15 个 367 少 1 。这下怎么办呢?很简单, 43 个 128 比 15 个 367 少 1 ,但是 367 个 128 显然等于 128 个 367 ,对比两个式子可知, 324 个 128 就会比 113 个 367 多 1 了,于是得到 x = 324 。

最后还有一个问题:我们最终总能到达“多 1 ”或者“少 1 ”,这正是因为一开始的两个数是互质的。如果方程 a • x mod n = b 当中 a 和 n 不互质,它们的最大公约数是 d > 1 ,那么在 a 和 n 之间做辗转相除时,算到 d 就直接终止了。自然,扩展的辗转相除也将在到达“多 1 ”或者“少 1 ”之前提前结束。那怎么办呢?我们有一种巧妙的处理方法:以 d 为单位重新去度量 a 和 n (或者说让 a 和 n 都除以 d ),问题就变成我们熟悉的情况了。让我们来举个例子吧。假如我们要解方程 24 • x mod 42 = 30 ,为了方便后面的解释,我们来给这个方程编造一个背景:说一盒鸡蛋 24 个,那么买多少盒鸡蛋,才能让所有的鸡蛋 42 个 42 个地数最后正好能余 30 个?我们发现 24 和 42 不是互质的,扩展的辗转相除似乎就没有用了。不过没关系。我们找出 24 和 42 的最大公约数,发现它们的最大公约数是 6 。现在,让 24 和 42 都来除以 6 ,分别得到 4 和 7 。由于 6 已经是 24 和 42 的公约数中最大的了,因此把 24 和 42 当中的 6 除掉后,剩下的 4 和 7 就不再有大于 1 的公约数,从而就是互质的了。好了,现在我们把题目改编一下,把每 6 个鸡蛋视为一个新的单位量,比如说“ 1 把”。记住, 1 把鸡蛋就是 6 个鸡蛋。于是,原问题就变成了,每个盒子能装 4 把鸡蛋,那么买多少盒鸡蛋,才能让所有的鸡蛋 7 把 7 把地数,最后正好会余 5 把?于是,方程就变成了 4 • x mod 7 = 5 。由于此时 4 和 7 是互质的了,因而套用扩展的辗转相除法,此方程一定有解。可以解出特解 x = 3 ,在它的基础上加减 7 的整倍数,可以得到其他所有满足要求的 x 。这就是改编之后的问题的解。但是,虽说我们对原题做了“改编”,题目内容本身却完全没变,连数值都没变,只不过换了一种说法。改编后的题目里需要买 3 盒鸡蛋,改编前的题目里当然也是要买 3 盒鸡蛋。 x = 3 ,以及所有形如 3 + 7n 的数,也都是原方程的解。

大家或许已经看到了,我们成功地找到了 24 • x mod 42 = 30 的解,依赖于一个巧合: 24 和 42 的最大公约数 6 ,正好也是 30 的约数。因此,改用“把”作单位重新叙述问题,正好最后的“余 30 个”变成了“余 5 把”,依旧是一个整数。如果原方程是 24 • x mod 42 = 31 的话,我们就没有那么走运了,问题将变成“买多少盒才能让最后数完余 5 又 1/6 把”。这怎么可能呢?我们是整把整把地买,整把整把地数,当然余数也是整把整把的。因此,方程 24 • x mod 42 = 31 显然无解。

综上所述,如果关于 x 的方程 a • x mod n = b 当中的 a 和 n 不互质,那么求出 a 和 n 的最大公约数 d 。如果 b 恰好是 d 的整倍数,那么把方程中的 a 、 n 、 b 全都除以 d ,新的 a 和 n 就互质了,新的 b 也恰好为整数,用扩展的辗转相除求解新方程,得到的解也就是原方程的解。但若 b 不是 d 的整倍数,则方程无解。

**备注:x为a的数量,y为b的数量(x0=1,y0=0);

看题目:

求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入格式:

输入只有一行,包含两个正整数 a, b,用一个空格隔开。

输出格式:

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

#include<iostream>
#include<cstdio>
using namespace std;

int gcd(int a,int b,int &x,int &y)
{
   if(b==0){
      x=1;
      y=0;
      return a;
   }
   int r=gcd(b,a%b,x,y);
   int temp=x;
   x=y;
   y=temp-a/b*y;
   return r;
}

void init()
{
   int a,b,x,y;
   cin>>a>>b;
   gcd(a,b,x,y);
   x=(x%b+b)%b;
   printf("%d",x);
}

int main()
{
   init();
   system("pause");
   return 0;
}

 

转载于:https://www.cnblogs.com/fuyun-boy/p/5981433.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值