斜率优化(CDQ分治,Splay平衡树):BZOJ 1492: [NOI2007]货币兑换Cash

Description

Input

第一行两个正整数N、S,分别表示小Y 能预知的天数以及初始时拥有的钱数。 接下来N 行,第K 行三个实数AK、BK、RateK,意义如题目中所述

Output

只有一个实数MaxProfit,表示第N 天的操作结束时能够获得的最大的金钱 数目。答案保留3 位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT



测试数据设计使得精度误差不会超过10-7。
对于40%的测试数据,满足N ≤ 10;
对于60%的测试数据,满足N ≤ 1 000;
对于100%的测试数据,满足N ≤ 100 000;

 
 1 #include <iostream>
 2 #include <cstring>
 3 #include <cstdio>
 4 #include <algorithm>
 5 using namespace std;
 6 const double eps=1e-8;
 7 const int maxn=100010;
 8 struct Node{
 9     double a,b,r,x,y,k;
10     int id;
11 }d[maxn],t[maxn];
12 double f[maxn];
13 int st[maxn],cnt,n;
14 double Abs(double a){return a>0?a:-a;}
15 double K(int a,int b){
16     if(Abs(d[a].x-d[b].x)<eps)return 1e20;
17     return (d[a].y-d[b].y)/(d[a].x-d[b].x);
18 }
19 void Solve(int l,int r){
20     if(l==r){
21         f[l]=max(f[l],f[l-1]);
22         d[l].y=f[l]/(d[l].r*d[l].a+d[l].b);
23         d[l].x=d[l].y*d[l].r;
24         return;
25     }
26     int mid=(l+r)>>1,t1=l,t2=mid+1;
27     for(int i=l;i<=r;i++){
28         if(d[i].id<=mid)
29             t[t1++]=d[i];
30         else 
31             t[t2++]=d[i];
32     }
33     for(int i=l;i<=r;i++)d[i]=t[i];
34     Solve(l,mid);
35     cnt=0;
36     for(int i=l;i<=mid;i++){
37         while(cnt>1&&K(i,st[cnt])-K(st[cnt],st[cnt-1])>=eps)cnt--;
38         st[++cnt]=i;
39     }
40     int fir=1;
41     for(int i=mid+1;i<=r;i++){
42         while(fir<cnt&&K(st[fir+1],st[fir])-d[i].k>=eps)fir++;
43         f[d[i].id]=max(f[d[i].id],d[st[fir]].x*d[i].a+d[st[fir]].y*d[i].b);
44     }
45     Solve(mid+1,r);
46     t1=l;t2=mid+1;
47     for(int i=l;i<=r;i++){
48         if(t2==r+1||(d[t2].x-d[t1].x>=eps||Abs(d[t2].x-d[t1].x)<eps&&d[t2].y-d[t1].y>=eps)&&t1<=mid)
49             t[i]=d[t1++];
50         else    
51             t[i]=d[t2++];
52     }    
53     for(int i=l;i<=r;i++)
54         d[i]=t[i];
55 }
56 
57 
58 bool cmp(Node a,Node b){
59     return a.k>b.k;
60 }
61 int main(){
62     scanf("%d%lf",&n,&f[1]);
63     for(int i=1;i<=n;i++){
64         scanf("%lf%lf%lf",&d[i].a,&d[i].b,&d[i].r);
65         d[i].k=-d[i].a/d[i].b;
66         d[i].id=i;
67     }
68     sort(d+1,d+n+1,cmp);
69     Solve(1,n);
70     printf("%.3lf\n",f[n]);
71     return 0;
72 }

  这里还有Splay。

  1 #include <iostream>
  2 #include <cstring>
  3 #include <cstdio>
  4 using namespace std;
  5 const double eps=1e-8;
  6 const double INF=1e20;
  7 const int maxn=100010;
  8 int ch[maxn][2],fa[maxn],rt,tot,n;
  9 double X[maxn],Y[maxn],lk[maxn],rk[maxn],ans;
 10 double fabs(double x){return (x>0)?x:-x;}
 11 void Rotate(int x){
 12     int y=fa[x],g=fa[y],c=ch[y][1]==x;
 13     ch[y][c]=ch[x][c^1];fa[ch[y][c]]=y;
 14     ch[x][c^1]=y;fa[y]=x;fa[x]=g;
 15     if(g)ch[g][ch[g][1]==y]=x;
 16 }
 17 
 18 void Splay(int x,int g=0){
 19     for(int y;(y=fa[x])!=g;Rotate(x))
 20         if(fa[y]!=g)Rotate((ch[fa[y]][1]==y)==(ch[y][1]==x)?y:x);
 21     if(!g)rt=x;    
 22 }
 23 
 24 double Get_K(int j,int k){
 25     if(fabs(X[j]-X[k])<=eps)return INF;
 26     else return (Y[j]-Y[k])/(X[j]-X[k]);
 27 }
 28 
 29 int Get_Prev(){
 30     int p=ch[rt][0],ret=p;
 31     while(p){
 32         if(Get_K(rt,p)+eps>=lk[p])p=ch[p][0];
 33         else ret=p,p=ch[p][1];
 34     }
 35     return ret;
 36 }
 37 
 38 int Get_Succ(){
 39     int p=ch[rt][1],ret=p;
 40     while(p){
 41         if(Get_K(p,rt)<=rk[p]+eps)p=ch[p][1];
 42         else ret=p,p=ch[p][0];
 43     }
 44     return ret;
 45 }
 46 
 47 void Insert(int &r,int pre,int p){
 48     if(r==0){r=p;fa[p]=pre;return;}
 49     if(X[p]<=X[r]+eps)Insert(ch[r][0],r,p);
 50     else Insert(ch[r][1],r,p);
 51 }
 52 
 53 void Update(int p){
 54     Splay(p);
 55     if (ch[p][0]){
 56         int l=Get_Prev();
 57         Splay(l,p);ch[l][1]=0;
 58         lk[p]=rk[l]=Get_K(p,l);
 59     }
 60     else lk[p]=INF;
 61     if (ch[p][1]){
 62         int r=Get_Succ();
 63         Splay(r,p); ch[r][0]=0;
 64         rk[p]=lk[r]=Get_K(r,p);
 65     }
 66     else rk[p]=-INF;
 67     if (lk[p]<=rk[p]+eps){
 68         rt=ch[p][0]; ch[rt][1]=ch[p][1]; fa[ch[p][1]]=rt; fa[rt]=0;
 69         rk[rt]=lk[ch[p][1]]=Get_K(ch[rt][1],rt);
 70     }
 71 } 
 72 
 73 int Get_Pos(double k){
 74     int p=rt;
 75     while(p){
 76         if(lk[p]+eps>=k&&k+eps>=rk[p])break;
 77         if(lk[p]<k+eps)p=ch[p][0];
 78         else p=ch[p][1];
 79     }
 80     return p;
 81 }
 82 
 83 double Get_Ans(double a,double b){
 84     int p=Get_Pos(-b/a);
 85     return a*Y[p]+b*X[p];
 86 }
 87 
 88 int main(){
 89 #ifndef ONLINE_JUDGE
 90     freopen("cash.in","r",stdin);
 91     freopen("cash.out","w",stdout);
 92 #endif
 93     double a,b,rate;
 94     scanf("%d%lf",&n,&ans);
 95     for(int i=1;i<=n;i++){
 96         scanf("%lf%lf%lf",&a,&b,&rate);
 97         if(i!=1)ans=max(ans,Get_Ans(a,b));
 98         X[i]=ans/(rate*a+b);
 99         Y[i]=X[i]*rate;
100         Insert(rt,0,i);
101         Update(i);    
102     }
103     printf("%.3f\n",ans);
104     return 0;
105 }

 

转载于:https://www.cnblogs.com/TenderRun/p/5307998.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值