Matlab高级教程_第二篇:Matlab相见恨晚的模块_02_并行运算-利用GPU并行执行MATLAB程序...

1  MATLAB原文:

  如果所有你想使用的函数支持GPU,你能够使用gpuArray把输入的数据传输到GPU,也能够唤起gather命令把传输值GPU的数据回收。

2  通过gpuDevice命令观察当前电脑的GPU设备

>> gpuDevice
ans = 
  CUDADevice (具有属性):

                      Name: 'GeForce GT 430'  % GPU设备的型号
                     Index: 1  % 当前GPU设备的编号
         ComputeCapability: '2.1' % 计算能力
            SupportsDouble: 1  %知否支持双精度运算
             DriverVersion: 8  % Cude驱动版本
            ToolkitVersion: 7.5000  % 工具版本
        MaxThreadsPerBlock: 1024  % 每个Block的最大线程数目
          MaxShmemPerBlock: 49152  % 每个Block可用的最大shared内容
        MaxThreadBlockSize: [1024 1024 64]  %单个Block支持x,y,z三个方向的最大值
               MaxGridSize: [65535 65535 65535]  %最大的grid大小
                 SIMDWidth: 32  %Warp大小
               TotalMemory: 1.0737e+09  %GPU设备全部内存大小
           AvailableMemory: 799592448  %GPU设备可分配内存大小
       MultiprocessorCount: 2  %GPU设备处理器个数(同CPU处理器个数相同,这是双核GPU)
              ClockRateKHz: 1500000  % 时钟频率多少赫兹
               ComputeMode: 'Default'  %计算模式
      GPUOverlapsTransfers: 1  
    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
           DeviceSupported: 1  %本机MATLAB支持的GPU设备个数
            DeviceSelected: 1  %当前选择GPU设备编号。

3  通过gpuDevice(index)编号选择第几个GPU处理器进行数值运算。

4  创建GPU数值阵列(最简单的一种复制和提取应用)

  通过gpuArray函数完成,通过gather函数回收运算或复制的GPU数据:

x = rand(3,3);
B = gpuArray(x);
whos B
% whos B  % 返回GPU赋值后的对象
%   Name      Size            Bytes  Class       Attributes
% 
%   B         3x3                 4  gpuArray   

X1 = gather(B);  % 把GPU中的值在收回来,赋值一个变量
x - X1; 
% x - X1 % 结果为0,表示过程正确
% ans =
%      0     0     0
%      0     0     0
%      0     0     0

5  对应的创建GPU数值阵列有一些其他的GPU函数,与常用的MATLAB函数一样,只不过加上gpuArray字符说明,就可以转换成GPU数值阵列。常用的这些函数有两种方式,而且可以函数名来作为定放的位置,分别如下:

eye(___,'gpuArray')	rand(___,'gpuArray')
false(___,'gpuArray')	randi(___,'gpuArray')
Inf(___,'gpuArray')	randn(___,'gpuArray')
NaN(___,'gpuArray')	gpuArray.colon(值)
ones(___,'gpuArray')	gpuArray.freqspace(值)
true(___,'gpuArray')	gpuArray.linspace(值)
zeros(___,'gpuArray')	gpuArray.logspace(值)
 	                gpuArray.speye(值)

6  其他的创建GPU数值阵列的函数可以用帮助的方式取查看

  help gpuArray.methodname(methodname就是想要查看的函数)

7  还有操作GPU数据的函数常用的有:

classUnderlying(___,'gpuArray')     gupArray.classUnderlying(值) % gpu数值阵列数据元素类型
isreal(___,'gpuArray')      gupArray.isreal(值) % 判断gpu数值阵列数据元素是否为实数
length(___,'gpuArray')     gupArray.length(值) %gpu数值阵列最后一维的数据长度
ndims(___,'gpuArray')     gupArray.ndims(值) %gpu数值阵列的尾数
size(___,'gpuArray')     gupArray.size(值) %gpu数值阵列各维大小

8  常用的还有这些

9  其实GPU变得很简单,就是赋值计算,取回。

 

转载于:https://www.cnblogs.com/noah0532/p/8646376.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值