hdu 4512

LICS的应用。还是从最后的结果考虑,肯定是在某个位置的i左边(包括i)递增的序列,右边(包括i)相应的对称的递减的序列,这个序列肯定是,1--i和i--n的逆序的公共递增序列,而1--i和i--n的逆序的公共递增序列肯定是一个符合题意的选择,那么以i为分界点的最优解肯定就是1--i和i--n的逆序的最长公递增序列。然后枚举位置i取以i为分界点的最优解的最大解就可以了。先按这个思路A了,有很多无用的循环,又优化了下。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <queue>
 5 #include <algorithm>
 6 #include <cmath>
 7 #include <stack>
 8 #include <vector>
 9 #define LL long long
10 using namespace std;
11 const int inf=0x3f3f3f3f;
12 const int maxn=200+10;
13 int f[maxn][maxn];
14 int a[maxn];
15 int main()
16 {
17     int T;
18     cin>>T;
19     while(T--)
20     {
21         int n;
22         cin>>n;
23         int i;
24         for(i=1;i<=n;i++) cin>>a[i];
25         int ans=0;
26         int j,k,maxv;
27         for(i=1;i<=n;i++)
28         {
29             memset(f,0,sizeof(f));
30             for(j=1;j<=i;j++)
31             {
32                 maxv=0;
33                 for(k=n;k>=i;k--)
34                 {
35                     f[j][k]=f[j-1][k];
36                     if(a[j]==a[k]) f[j][k]=maxv+1;
37                     if(a[k]<a[j]&&f[j-1][k]>maxv) maxv=f[j-1][k];
38                 }
39             }
40             for(k=n;k>i;k--) ans=max(ans,f[i][k]*2);
41             ans=max(ans,f[i][k]*2-1);
42         }
43         printf("%d\n",ans);
44     }
45 }

优化后

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <queue>
 5 #include <algorithm>
 6 #include <cmath>
 7 #include <stack>
 8 #include <vector>
 9 #define LL long long
10 using namespace std;
11 const int inf=0x3f3f3f3f;
12 const int maxn=200+10;
13 int f[maxn];
14 int a[maxn];
15 int main()
16 {
17     int T;
18     cin>>T;
19     while(T--)
20     {
21         int n;
22         cin>>n;
23         int i;
24         for(i=1;i<=n;i++) cin>>a[i];
25         int ans=0;
26         int k,maxv;
27         memset(f,0,sizeof(f));
28         for(i=1;i<=n;i++)
29         {
30                 maxv=0;
31                 for(k=n;k>=i;k--)
32                 {
33                     if(a[i]==a[k]) f[k]=maxv+1;
34                     if(a[k]<a[i]&&f[k]>maxv) maxv=f[k];
35                 }
36             for(k=n;k>i;k--) ans=max(ans,f[k]*2);
37             ans=max(ans,f[k]*2-1);
38         }
39         printf("%d\n",ans);
40     }                                                    
41 }

 

     

转载于:https://www.cnblogs.com/lj030/p/3237325.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值