因为论文关系要用到pyspark,具体情形如下:
有一个list=['aaa','bbb','ccc','ddd'],然后有一个rdd内数据类型是str,eg:'abcdefg',正常如果是需要筛选数组包含的rdd数据可以定义一个broadcast,然后写成:
broadcastvalue = sc.broadcast(list) rdd.filter(lambda x:x in broadcastvalue.value).collect()
我的需求是要筛选str中包含有list中任意一个数据的那些数据,eg:如果str ='aaaxxxxxx',因为list[0]='aaa' in str,所以这个数据是我需要的,开始时尝试写成:
def choice(data,list): for i in list: if i in data: return True return False broadcastvalue = sc.broadcast(list) rdd.filter(lambda x:choice(x,broadcastvalue.value)).collect()
但是这样会报错broadcast is not iterable,这是说明broadcast是一个不可迭代的对象,搜索无果后想到了解决方案,竟然不可以迭代那么我就用非迭代的方式遍历就行了:
def choice(data,list): for i in range(len(list)): if list[i] in data: return True return False broadcastvalue = sc.broadcast(list) rdd.filter(lambda x:choice(x,broadcastvalue.value)).collect()
其实修改很简单,只是不再用它作为一个迭代对象来遍历了。
废话语录:
在做这个的时候python3碰上了许多的UnicodeError问题,解决思路:
1.肯定是编码问题
2.读取数据库的先判断数据库的编码,表编码、字段编码,读取csv的先判断csv的编码
3.再判断python的脚本编码
4.再判断各个字符串的编码情况(str.encode('utf-8'))
最后发现是在存csv的时候字段编码是ascii,然后用.encode('utf-8')报了UnicodeError错误,最后找到了解决方法.encode('utf-8',errors='ignore')