南京大学计算机 史颖欢,离散数学-南京大学计算机科学与技术系.pdf

离 散 数 学

Discrete Mathematics

第五讲:集合论导引

史颖欢

南京大学计算机科学与技术系

201年9月 8 日

前 情 提 要

 证明的本质

 逻辑推理的形式结构

 常用的证明方法与证明策略

 直接证明法,间接证明法

 归谬法(反证法),穷举法

 空证明法,平凡证明法

 构造性证明法,反例证明法

前情提要 2

本讲主要内容

 引子:数学基础的几次危机

 集合的概念

 子集、空集与幂集

 集合的运算与集合代数

 集合公式的几种基本证明方式

本讲主要内容 3

引子:数学基础的几次危机

 19世纪早期,发现数学存在缺陷

 Н.И.Лобаче́вский,G. Riemann :非欧几何

 A. Cauthy等:分析(微积分及其扩展) 的基础

 19世纪后期的公理化运动:去除基于直觉或经验

的朴素概念的模糊之处,使数学严密化

 G. Peano ,D. Hilbert :算术与几何的公理化

引子 4

数学基础的几次危机(续)

 1900年国际数学大会

 H. Poincare: “借助集合论…可以建造数学大厦…今天我

们可以宣称绝对的严密已经实现了!”

 随后发现了Cantor集合论中的一些悖论:如1901年

的罗素悖论

 G. Frege评论:当大厦竣工时基础却动摇了

基础知识 5

数学基础的几次危机(续)

危机的解决:

公 理 化 集 合 论

引子 6

集合的概念

 集合没有明确的定义,G. Cantor给出了一种刻划:

“吾人直观或思维之对象,如为相异而确定之物,其总括

“Unter einer Menge verstehen wir jede Zusammenfassung M

之全体即谓之集合,其组成此集合之物谓之集合之元素。

von bestimmten wohlunterschiedenen Objeckten in unserer

通常用大写字母表示集合,如、、等,用小写字母表

Anschauung oder unseres Denkens(welche die Elemente von

示元素,如、、等。若集合系由、、等诸元素所

M genannt werden) zu einem ganzen”

组成,则表如 = {,,,⋯},而为之元素,亦常用 ∈

—— Georg Cantor

之记号表之者, 非之元素,则记如 ∉。”

(肖文灿译于1939年, 《集合论初步》,商务印书馆)

集合的概念 7

集合的概念(续)

 例: 1,2,3 为集合, “自然数之全体”为集合;

但诸如 “甚大之数”或 “与点接近之点”则不

能为集合,因其界限不清

 集合

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值