案例 1
用户反馈生产环境有两条SQL语句,可以确认区别只有表名的不同(实际参数相同),但性能上却有10倍以上的差距。
通过生成的监视报告可发现SQL1执行时间8s,IO 403MB,如下图:
SQL2 执行时间2.1m,IO则有15GB,如下图:
根据业务反馈,SQL1中表是影子表,数据量,表结构跟对应表几乎相同,那么为什么执行时间差距这么大呢?
DBA在此之前已经在准生产环境多次通过DBMS_SHARED_POOL.PURGE
删除对应的执行计划,换参数多次重复解析,均没获得正确的执行计划。
通过分析对比监视报告发现,SQL1中with语句正常物化,执行计划中存在临时表转化操作,即TEMP TABLE TRANSFORMATION
,而SQL2中由于没做临时表转化操作,IM_HISMESSAGE
表被访问多次,效率低下。
通过再次观察整个SQL运行期间的等待事件,我们可以快速发现,其实SQL慢了10倍的原因并非是执行计划引起的(主要等待事件为直接路径读,读写临时表比例很低,而且并没有出现经典的大表作为NL被驱动表的情况),对比运行数据,可以发现IO的增量主要来源于对IM_HISMESSAGE
表的扫描。
影子表的差异
通过逐行对比号返回列的详细信息,我们终于发现了谜底:
原始表是有LOB字段的,影子表没有LOB字段,IO量小了很多。同时由于存在LOB字段,with语句无法进行临时表转化。
而SQL文本中经典的 select则完美的掩盖了这一差异,开发人员图方便写出来的 select * 查询了根本不需要的LOB字段,导致了性能的急剧下降。
案例 2
客户生产环境的AWR报告上有一条夸张的TOPSQL,占全天DBTIME的84%
原始SQL不展示了,SQL本身其实比较简单,模拟下来如下:
select * from test_a where object_id =11;
执行计划也很简单,所以很快也能发现问题,TABLE ACCESS BY INDEX ROWID
的COST相对异常的高,排查下表的统计信息时,惊奇的发现,这是张宽表,有400+列,当宽表遇上select *
时,性能就急剧下降了。
问题定位虽然很快,但处理起来却并不方便,毕竟需要找到开发改SQL,这快不了。当然没什么疑问的是,系统的性能问题出在SQL代码的质量。
案例 3
准备环境如下:从dba_objects
中复制两张表t1,t2作为测试环境表。
准备了两个查询,相同的条件,区别主要在于一个只查单列,另外一个查询全列。
通过模拟,可以发现,use_merge
这种表连接方式情况下,排序操作的内存消耗有较大的差距,这种差距会在有索引情况下,且指定查询列也能命中索引走索引快速全扫描时被大幅放大。
查询全列,SORT JOIN
内存消耗 1810K:
查询id,SORT JOIN
内存消耗 424K:
如果是HASH JOIN的话,join操作影响相对较小,可以换hint再测试看看。
案例 4
有些场景,SQL查询的表数据量较大,查询字段也较多(无法全部走索引)的时候,这里暂时不考虑*
增加的不需要使用的列在数据库返回数据到应用时网络层的消耗。
如果你的机器刚好是EXADATA,那么smart scan
也会让select *
与指定列的查询有明显的性能差异。
这个限于篇幅推荐直接参考Oracle官方技术博客:https://blogs.oracle.com/exadatacn/exadata-v5
总结
通过这些案例,select *
这个规则,变得立体了许多。
select *
写法方便快捷,但带来的问题却藏得很深,这种问题在上线后,随着系统的维护,都将变成修复成本极高的隐患。
SQL审核做得好,数据库性能不再是烦恼~至于其他关于数据库的痛难点,不妨来DAMS中国数据智能管理峰会找找解决方案,峰会专设【数据库分场】,部分议题如下:《从自研演进看分布式数据库》中国银联 云计算中心团队主管 周家晶
《开源数据库MySQL在民生银行的应用实践》民生银行 项目经理 徐春阳
《如何构建数据库容器化PaaS》爱可生 资深方案架构师 徐阳扫码享受限时优惠,一起在数据库变迁中站稳脚跟!