原标题:小知识:分子动力学基本原理及应用
为了微观模拟体系能够反映宏观实验现象, 需要通过周期性边界条件对模拟对象体系进行周期性复制, 以避免在实际中并不存在的边缘效应(edge effects)。原则上,对于任何分子体系的理论研究都需要求解含时薛定谔方程。但在实际工作中,更关注的是原子核的运动轨迹,这样的轨迹可以利用波恩-奥本海默近似(Born-Oppenheimer approximation),通过求解经典力学运动方程获得。Alder和Wainwright曾表示计算机模拟实验会成为联系宏观实验现象和微观本质的重要桥梁,在他们首次进行分子动力学模拟实验之后10 年,法国物理学家Verlet提出了一套牛顿运动方程的积分算法,与此同时提出的还有另一套产生和记录成对近邻原子的算法,从而大大简化了原子间相互作用的计算。这两种算法至今仍以一些变形的形式在实践中被广泛应用[1,2]。
过去几十年开发了多种原子级模拟方法,包括晶格静力学、晶格动力学、蒙特卡罗和分子动力学等。其中,分子动力学特别适用于塑性变形的研究,它通过一些规定的原子间相互作用势函数的原子相互作用系统的牛顿方程的解,研究变形过程中的实时行为,并包括晶格的非简谐性、内应力的高度不均匀,以及系统的瞬态响应等方面的影响。
分子动力学主要依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。它对原子核和电子构成的多体系统,求解运动方程,是一种能够解决大量原子组成的系统动力学问题的计算方法,不仅可以直接模拟物质的宏观演变特性,得出与试验结果相符合或相近的计算结果,还可以提供微观结构、粒子运动以及它们和宏观性质关系的明确图像,从而为新的理论和概念的发展提供有力的技术支撑。
分子动力学的对象是一个粒子系统,系统中的原子间的相互作用用势函数来描述,因此,正确选择势函数的类型及其参数,对于模拟的结果优劣具有重要作用。势能函数在大多数情况将描述分子的几何形变最大程度地简化为仅仅使用简谐项和三角函数来实现;而非键合原子之间的相互作用,则只采用库仑相互作用和Lennard-Jones 势相结合来描述。其中,对于原子间相互作用力的描述通常是经验或半经验的,这样虽然能够提高计算效率,但无法完全揭示电子键合的多体性质,尤其对于缺陷附近与自身结构和化学性有关的复杂自洽变分函数。Daw和Baskws的EAM(Embedded-atom model)势函数在某种程度上融合了电子键合的多体性质,将系统的总势能表示为:
式中:Fi是原子i的嵌入