matlab手动绘制图像mask_使用Mask-RCNN在实例分割应用中克服过拟合

本文展示了如何在仅使用1349张图像的小型Pascal VOC数据集上训练Mask-RCNN进行实例分割,以克服过拟合。通过数据增强和迁移学习策略,模型在测试集上达到了0.53650的mAP。文章还详细介绍了训练过程和结果可视化。
摘要由CSDN通过智能技术生成

作者:Kayo Yin

编译:ronghuaiyang

导读

只使用1349张图像训练Mask-RCNN,有代码。

代码:https://github.com/kayoyin/tiny-inst-segmentation

6c48413ace9f18c7d55847f73ed09c5f.png

介绍

计算机视觉的进步带来了许多有前途的应用,如自动驾驶汽车或医疗诊断。在这些任务中,我们依靠机器的能力来识别物体。

我们经常看到的与目标识别相关的任务有4个:分类和定位、目标检测、语义分割和实例分割。

21609856c3cd7eb6eb3a9651d4594e46.png

分类和定位中,我们感兴趣的是为图像中目标的分配类标签,并在目标周围绘制一个包围框。在这个任务中,要检测的目标数量是固定的

物体检测不同于分类和定位,因为这里我们没有预先假设图像中物体的数量。我们从一组固定的目标类别开始,我们的目标是分配类标签,并在每次这些类别中的一个目标出现在图像中时绘制边界框。

语义分割中,我们为每个图像像素分配一个类标签:所有属于草的像素被标记为“grass”,属于羊的像素被标记为“sheep”。值得注意的是,例如,这个任务不会对两只羊产生区别。

我们的任务是实例分割,它建立在目标检测和语义分割之上。在目标检测中,我们的目标是在预定义的类别中标记和定位目标的所有实例。但是,我们没有为检测到的目标生成边界框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值