* 考虑线性方程组AX=B和矩阵A的LU分解,线性方程组可以改写成L*U*X=B,由于左除算符'\'可以快速处理三角矩阵,因此可以快速解出: X=U\(L\B) 矩阵的行列式和逆也可以利用LU分解来计算,如 det(A)=det(L)*det(U) inv(A)=inv(U)*inv(L) 对于稀疏矩阵,在MATLAB中提供了函数luinc()来做不完全LU分解,其具体用法如下: [L U]= luinc(X,DROPTOL),其中X、L和U的含义与函数lu()中的变量相同,DROPTOL为不完全LU分解的丢失容限。当DROPTOL设为0时,退化为完全LU分解。 [L,U] = luinc(X,'0'),0级不完全LU分解。 [L,U,P] = luinc(X,'0'),0级不完全LU分解。 * 3.QR分解 QR分解就是将m×n的矩阵A分解为m×n的矩阵Q和n×n的上三角矩阵R的乘积,且Q'*Q=I,即A=Q*R。 在MATLAB中QR分解是由函数qr()来实现,其具体用法如下: [Q,R] = qr(A) 满足A=Q*R。 R = qr(A), 返回上三角矩阵R。 4.奇异值分解 奇异值分解就是将m?n的矩阵A分解为A=U*S*V’,其中U为m?m的酉矩阵,V为n?n的酉矩阵,S为m?n的矩阵,并可如下表示: ,其中 , , 在MATLAB中奇异值分解是由函数svd()来实现,其具体用法如下: [U,S,V] = svd(X),满足A=U*S*V’,并且 按降序排列。 S = svd(X), 返回 ,并且 按降序排列。 * 2.4.4 矩阵的特征值和特征向量 方阵A的特征值λ和其对应的特征向量ν满足下式: A*ν=λ*ν 在MATLAB中用函数eig()来计算特征值和其对应的特征向量,其具体用法如下: d = eig(A), 返回矩阵A的所有特征值。 [V,D] = eig(A),返回矩阵A的特征值和特征向量。 2.4.5 矩阵相似变换 矩阵相似变换是指,对于方阵A和非奇异矩阵B可得到相似矩阵X=B-1*A*B。 1.对角阵变换 对于方阵A,若[V D]=eig(A)得到的矩阵V非奇异,则A可经过相似变换得到对角阵,即D=V-1*A*V,也称矩阵A可对角化。 ? * 2.Jordan变换 对于方阵A,若[V D]=eig(A)得到的矩阵V奇异,则A经过相似变换将不能得到对角阵,只能得到其对应的Jordan标准型。Jordan标准型是由若干Jordan块构成,如下所示: ,其中 为mi重的特征根 对应的Jordan块。 在MATLAB中用函数jordan()来实现Jordan变换,其具体用法如下: [V,D] = jordan(A), 满足D=V-1*A*V。 D = jordan(A), 返回矩阵A对应的Jordan标准型。 ? * 2.4.6 非线性运算 MATLAB提供一些矩阵的非线性运算函数,其功能如表3-3所示。 ? 1.矩阵指数运算 在MATLAB中用函数expm()来计算矩阵指数,其具体用法如下: Y = expm(X),返回矩阵X的指数。 函 数 名 功 能 描 述 ? 函 数 名 功 能 描 述 expm 矩阵指数运算 ? sqrtm 矩阵开平方运算 logm 矩阵对数运算 ? funm 通用矩阵运算 * 2.矩阵对数运算 矩阵对数运算是矩阵指数运算的逆运算,在MATLAB中用函数logm()来计算矩阵对数,其具体用法如下: L = logm(A),返回矩阵A的对数。 3.矩阵开平方运算 在MATLAB中,有两种计算矩阵A平方根的方法,即A^0.5和sqrtm(A)。函数sqrtm()比A^0.5的运算精度更高,其具体用法如下: X = sqrtm(A),返回矩阵A的平方根X。 4.通用矩阵运算 MATLAB提供通用矩阵运算的函数funm(),其具体用法如下: F = funm(A,fun),将指定函数fun作用在方阵A上。 * 2.5 矩阵元素运算函数 2.5.1 三角函数 MATLAB提供一些三角函数,其功能如表3-5所示。 函 数 名 功 能 描 述 ? 函 数 名 功 能 描 述 Sin 正弦 ? sec 正割 Sind 正弦,输入以度为单位 ? secd 正割,输入以度为单位 Sinh 双曲正弦 ? sech 双曲正割 Asin 反正弦 ? asec 反正割 Asind 反正弦,输出以度为单位 ? asecd 反正割,输出以度为单位 Asinh 反双曲正弦 ? asech 反双曲正割 Cos 余弦 ? csc 余割 Cosd 余弦,输入
matlab中 u v =eig功能,MATLAB实用教程(第2版)第二章基础知识.ppt
最新推荐文章于 2021-03-23 09:12:43 发布
本文介绍了MATLAB中矩阵运算的一些关键方法,包括LU分解、QR分解、奇异值分解和特征值计算。LU分解用于解决线性方程组,QR分解用于矩阵表示,奇异值分解在处理矩形矩阵时尤为重要。此外,还提到了矩阵的对角化和Jordan变换。非线性运算如矩阵指数、对数和平方根也在MATLAB中有相应的函数实现。这些工具对于数值计算和线性代数问题的求解至关重要。
摘要由CSDN通过智能技术生成