matlab剩余寿命概率密度,分享关于评估设备剩余使用寿命的三种方法

本文介绍了如何利用Predictive Maintenance Toolbox在matlab中评估设备的剩余使用寿命(RUL)。根据寿命数据、运行至故障的历史数据和阈值数据,通过比例风险模型、退化曲线比较和指数退化模型等方法预测RUL,并展示了这些方法在电池、发动机和风力涡轮机等应用中的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

剩余使用寿命(下文称 RUL)指在机器维修或更换前的运行时长。借助 RUL,工程师可以安排维护时间、优化运行效率并避免计划外停机。因此,预测 RUL 是预测性维护计划中的首要任务。

RUL 预测模型不仅可预测 RUL,还可提供预测的置信界限。该模型的输入项是状态指标,即从传感器数据或日志数据提取的特征。其行为随着系统退化或运行模式的变化而改变,这种改变是可预测的。

RUL 的计算方法取决于可用数据的类型:

寿命数据,用于指示相似机器运行至发生故障所用的时长

相似机器的运行至故障的历史数据

检测故障所用状态指标的已知阈值

Predictive Maintenance Toolbox提供的模型可基于每类数据类型对 RUL 进行评估。

使用寿命数据

比例风险模型和组件故障时间的概率分布用于根据寿命数据评估 RUL。举一个简单的例子,我们可以根据过往充电次数及协变量评估电池的放电时间,其中协变量指电池运行环境(如温度)和电池负载等变量。

生存函数图(图 1)显示了电池在不同运行时长出现故障的概率。如图所示,如果电池运行了 75 个周期,则其达到使用寿命的概率为 90%。

854ca60b456504d42da5c51d1cb89de4.png

图 1. 生存函数图。在运行 75 个周期后,电池能够继续运行的概率为 0.1 或 10%。

运行至故障的数据

如果您有一个包含设备运行至故障的数据的数据库,并且该数据来自相似组件或行为方式相似的不同组件ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值