文档介绍:
第2章数据的表示
本章学****导读:
(1)计算机中如何来表示数据,包括数值数据和非数值数据。
(2)数值数据的编码表示:包括数制,原码、反码、补码,以及定点与浮点数。
(3)非数值数据(文字、图形、图像、声音、视频)的简单表示法。
本章讨论在计算机内部各类基本数据
的表示方法及其相互间的等值转换。
2.1 数据、信息和媒体
数据是对事实、概念或指令的一种特殊表达形式,这种特殊的表达形式可以用人工的方式或者用自动化的装置进行通信、翻译转换或者进行加工处理。
在计算机系统中所指的数据均是以二进制编码形式出现的。
计算机内部由硬件实现的基本数据区分为数值型数据和非数值型数据。
2.1.1 数据
信息是对人有用的数据,这些数据可能影响到人们的行为和决策。
媒体又称媒介、媒质,是指承载信息的载体。
2.1.2 信息
计算机信息处理,实质上就是由计算机进行数据处理的过程。
信息是对数据的解释,数据是信息的载体。
2.1.3 媒体
与计算机信息处理有关的媒体有5种:
感觉媒体表示媒体
存储媒体表现媒体传输媒体
图 2.1 计算机外部信息与内部数据的转换
2.2 数字化信息编码
所谓编码,就是用少量简单的基本符号,对
大量复杂多样的信息进行一定规律的组合。
在计算机系统中,凡是要进行处理(包括计算、查找、排序、分类、统计、合并等)、存储和传输的信息,都是用二进制进行编码的。
计算机内部采用二进制表示的原因:
1)二进制只有两种状态,在数字电路中很容易实现。
2)二进制编码、运算规则非常简单。
3)二进制的“0”、“1”与二值逻辑一致,很容易实现逻辑运算。
2.3 数值数据的编码表示
数值数据是表示数量多少和数值大小的数据。
在计算机内部,数值数据的表示方法有两大类:第一
种是直接用二进制数表示;另一种是采用二进制编码的
十进制数(Binary Coded Decimal Number,简称BCD)
表示。
表示一个数值数据要确定三个要素:进位计数制、
定/浮点表示和数的编码表示。
2.3.1 进位计数制及其各进位制数之间的转换
在某个数字系统中,若采用R个基本符号(0,1,
2,...,R-1)表示各位上的数字,则称其为基R
数制,或称R进制数字系统,R被称为该数字系统的基,
采用“逢R进一”的运算规则,对于每一个数位i,其该
位上的权为R i。
在计算机系统中,常用的几种进位计数制
有下列几种:
二进制 R=2, 基本符号为 0和1
八进制 R=8, 基本符号为 0,1,2,3,4,5,6,7
十六进制 R=16, 基本符号为 0,1,2,3,4,5,6,7,8,9,
A,B,C,D,E,F
十进制 R=10, 基本符号为 0,1,2,3,4,5,6,7,8,9
例:十进制数2585.62代表的实际值是
2x103+5x102+8x101+5x100+6x10-1+2x10-2
例:二进制数(100101.01)2代表的实际值是:
(100101.01)2 = 1x25 + 0x24+ 0x23 + 1x22 + 0x21 +
1x20+ 0x2-1 + 1x2-2=(37.25)10
1.R进制数转换成十进制数
任何一个R进制数转换成十进制数时,只要
“按权展开”即可。
例1 二进制数转换成十进制数。
(10101.01)2=(1×24+0×23+1×22+0×21+1×20+
0× 2-1+1×2-2)10=(21.25)10
例2 八进制数转换成十进制数。
(307.6)8=(3×82+7×80+6×8-1) 10=(199.75) 10
例3 十六进制数转换成十进制数。
(3A.C)=(3×161+10×160+12×16-1) 10
=(58.75) 10
2. 十进制数转换成R进制数
任何一个十进制数转换成R进制数时,要将
整数和小数部分分别进行转换。
(1)整数部分的转换
整数部分的转换方法是“除基取余,上右下左”。
例1 将十进制整数835分别转换成二、八进制数。
0
1
8
13
8
104
8
835
8
余数低位
3
0
5
1
(835) 10=(1503) 8
高位
(835) 10=(1101000011) 2
内容来自淘豆网www.taodocs.com转载请标明出处.