《正方形练习题(含答案)》由会员分享,可在线阅读,更多相关《正方形练习题(含答案)(3页珍藏版)》请在人人文库网上搜索。
1、正方形练习题1. 菱形、矩形、正方形都具有的性质是()A对角线相等且互相平分 B 对角线相等且互相垂直平分C 对角线互相平分 D 四条边相等,四个角相等2. 如图,E、F分别是正方形 ABCD勺边CD AD上的点,且CE= DF, AE BF相交于点0,下列结论AEBF;AE1BF;A0= 0ES AOB S四边形DEOF中,错误的有()A. 1个 B . 2个 C . 3个 D . 4个3. 如图,E是正方形ABCD内一点,如果 ABE为等边三角形,那么/ DCE=度.4. 如图,E是正方形ABCD的边BC延长线上一点,且 CE=AC,AE交CD于点F,则/ E=度.5. 如图,若P是边长1。
2、的正方形ABCD内一点且Saabp=0.4,贝U Sdcp=.6. 如图,在菱形ABCD中,/ BAD=80,AB的垂直平分线交对角线 AC于点F, E为垂足,连接DF, 则/ CDF的度数= 度.D第3题第5题2的正方形ABCD中,M为边AD的中点,7.如图,在边长为边作正方形DEFG,点G在边CD上,贝U DG的长为延长MD至点E,使8.如图,E, F, G, H分别为正方形ABCD的边AB , BC , CD , DA上的点,且1 一AE BF CG DH - AB,则图中阴影部分的面积与正方形 ABCD的面积之比为 39.如图,菱形 ABCD中/ B= 60, A吐 2, E、F分别是。
3、 BC CD的中点,连接 AE、EF、AF,UA AEF周 长为10. 如图,已知P是正方形ABCD寸角线BD上一点,且BP = BC则/ ACP度数是 22.5 度-.11. 已知正方形ABCD的边长为1,连接AC,BD ,CE平分/ ACD交BD于点E,则DE =2- 1第10题11.如图,点E是正方形ABCD的边AB上任意一点,过点D作DF DE交BC的延长线于点F .求证:DE DF .12.如图,已知平行四边形 ABCD中,对角线AC, BD交于点O, E是BD延长线上的点,且 ACE是 等边三角形.(1)求证:四边形ABCD是菱形;13.如图,ABCD是正方形,AE / DB, B。
4、E = BD , BE交AD于F,试说明: 是腰三角形14.如图,在正方形 ABCD, PAQ是正三角形,设 AB=10,求PB的长。15如图,E、F、M、N分别是正方形 ABCD四条边上的点,且 AE=BF=CM=DN,求证,四边形 EFMN是正方形。结论:EFMN是正方形16.如图,点E、F在正方形ABCD的边BC、CD 上, AE、BF相交于点G,BE=CF,猜想AE与BF的关系并证明且交AG于点F。求证:AF=BF+EF17.如图,正方形 ABCD中,G是BC上的任意一点,DE丄AG于点E,BF / DE,18.如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG 。
5、,点E、F分别在AG 上,连接 BE、DF,/ 仁/2 ,/ 3=7 4,若/AGB=30 求 EF 的长.AC正方形练习题答案I、C 2. A 3.15 度.4. 22.5 度.5. 0.1.分析:过 P 作 EF,使 EF / BC,贝 U EF 丄 CD , EF 丄 AB ,二 Saabp=AB?EP, Sa cdp=_ CD?PF,根据 Saabp+Sa cdp=_6. 60 度. 7. 5-18、2/5_9、3 310、22.5 度.II. DE=2 111.证明:四边形 ABCD 是正方形,二 AD=CD ,/ A= / DCF=900又 v DF 丄DE, / 1 + Z 3=。
6、Z 2+Z 3A/ 1二/2 在 RtA DAE 和 RtA DCE 中,/ 1 = Z 2, AD=CD,/ A= / DCF RtA DAE RtA DCE (ASA) / DE=DF .12.证明:(1)四边形ABCD是平行四边形,AO CO .又QAACE是等边三角形,EO AC,即DB AC . 平行四边形ABCD是菱形;1(2) QA ACE 是等边三角形,AEC 60 . EO AC, AEO 1 AEC 30.AED 2 EAD,2EAD 15.ADO EAD AED 45.四边形ABCD是菱形,ADC 2 ADO 90,四边形ABCD是正方形.13证明:过点A作BD的垂线,过。
7、点E作BD的垂线.垂足分别为G,H.显然有 AG=EH.又 AG=1/2 BD,所以 EH=1/2 BD,又 BD=BE,所以 EH=1/2 BE,可知 DBE=30 度.所以 FBA=15 度,所以 AFB= EFD=90-15=75 度,所以 AFB= EFD= FED.所以 DE=DF.14. 解: ABP ADQ QAP=60度, 所以 PAB=30度,设 PB二x,则 AP=/2 CP=W (10-X),所以 x2 1022(10 x)2,x 20 10.315. 证明:v ABCD 是正方形,AE=BF=CM=DN / AN=BE=CF=DM,在AAEN、ABFE、ACMF、ADN。
8、M中,AE=BF=CM=DN,/ A= / B= / C=Z D,AN=BE=CF=DM AEN A BFEA CMFA DNM / EN=FE=MF=NM, / ANE= / BEF/ NEF=180 -( / AEN+ / BEF) =180-(/ AEN+ / ANE ) =180-90 90,v EN=FE=MF=NM, v EFMN 是菱形 又v/ NEF=90 EFMN是正方形16 证明:在正方形 ABCD 中,AB=BC, / ABC= / C=90,v BE=CFABE 也/BCF ( SAS) AE=BF,/ BAE= / CBF,v/ BAE+ / AEB=90,/ CBF。
9、+ / AEB=90,即/ BGE=90 AE 丄 BG17.证明:v 四边形 ABCD 是正方形, AB=AD, / BAD=90,/ 1 + / 3=90v DE 丄 AG,则/AED= / DEG=90,/2+/3=90,/ 1 = / 2v BF/DE,/AFB= / DEG=90,v/ 1 = / 2,/ AFB= / AED=90 ,AB=AD A ABF A DAE (AAS ) BF=AE, AF=AE+EF=BF+EF18解:在正方形 ABCD中, AD / BC, / 仁/ AGB=30在 Rt AADF 中,/ AFD=90,AD=2 AF=3 , DF =1, 由A ABE A ADF, AE=DF=1 EF=AF-AE= 3 1。