
写在前面
别以为你穿个贵点的马甲我就不认识你是1了!
疑惑不解的0.999...

在中学我相信大家一定听说过

这个传说吧,我记得当时是一个同学给我讲的,奈何我当时年少轻狂,一口否认肯定不等于,还大言不惭地说什么无限靠近永不相交。现在想想是我年少无知。
那么这个和1靠的非常近的无限循环小数到底等不等于1呢?阿拉丁今天就好好和大家探讨一下(为了让更多的人可以听懂,阿拉丁不会讲关于实数理论的严格证明)

一些所谓的证明
在正式讨论之前我们先来看看“民间数学家”的非主流证明
分数证明

这个证明真的是华丽中透着一丝丝朴素,矛盾中透着一丝丝合理,妖艳中透着一丝丝淡雅......
看似无懈可击、天衣无缝,实则偷换概念,利用人的惯性思维。

方程证明

哇塞,好棒棒,又是一个看似天衣无缝,闭月羞花、倾国倾城.....咦好像不太对,哎呀别在意。这样证明的存在到底是人性的扭曲还是道德的沦丧?
阿拉丁有话说
以上两种证明是现在市面上比较普遍的证明。当然,这种证明的存在即有合理性,我们只能说这些证明有问题,但不能说他们不应该存在,阿拉丁觉得有了这些的存在,才能引发人们对于数学的思考。
那为什么说这些证明是不对的呢?其实他们只是偷换了概念,利用惯性思维罢了。在中学课本上从来没有任何地方定义过无限小数的加、减、乘、除四则运算吧,所以无论说

还是

都是我们惯性思维照搬有限小数的四则运算罢了。他们如何相等,我们并不知道。

相等的意义
那么下面阿拉丁就尽量用大家都能听得懂的方式来解释一下为什么

分数相等的意义
我们小学学过自然数,在自然数范围内,表示是唯一的,比如说2=2一定成立,不可能在自然数中除了2还有什么数字 A ,使得 A=2。
但是上了上了初中以后我们学习了有理数,其实就是说分数的概念。那么表示就不唯一了。比如还是2,我们可以表示成

等等
其实分数这样的表示是一种“家族式表示”就是一种类的概念,当数系从自然数扩展到有理数,每一个数都是有无限多个相等的数组成的类,我们称之为 “等价类” ,所谓两个分数相同,指的就是他们两个属于同一个等价类。
可以说在自然数系里每一个数都是孤独的,而在有理数系中每一个数都有着无数的和它相等等 小伙伴陪着它。也就是说分数或者有理数是以等价类的形式存在的

实数相等的意义
那么随着数系的扩充有理数扩展到实数,这里可能有一点点小难理解,需要用到极限的概念。
我们表示一个数的常用方法是把任意一个实数看做收敛的有理数列。这就是说,所谓实数,就是 “极限相同的有理数列” 的共同体,因此它也是一个等价类。
举个例子,比如两个有理数列

满足

,则说两者属于一个等价类。
我们把每一个等价类都当做一个对象来看待,这里的对象指的是一列有理数,比如
根号2 就可以表示为

(即根号2 的不足近似值组成),也可以表示为

(即根号2的过剩近似)。因此我们可以看到 根号2有着无数的极限相同的有理数列表示,它们属于同一个等价类。

因此我们说

和

都是收敛到1的有理数列。在这个意义上,它们属于同一个等价类,代表同一个实数。
于是可以写成

也就是我们今天的主题

阿拉丁有话说
由此看来,有理数的表示不唯一,由彼此相等的分数构成等价类。而实数表示也不唯一,可以表示为收敛的无限数列,具有相同极限的有理数列构成等价类。
因此

不再是数与数之间的概念,而是类与类之间的概念。
今天你学废了吗?

后记
这个问题其实对于中学生来说有点超纲,但是实实在在可以作为数学类的科普,阿拉丁在网上看到很多关于这方面的讨论,大多数是网络喷子啥也不懂乱喷人。不过有兴趣的同学也可以去了解一下这个问题的严谨证明,通常可以用戴德金分割和柯西序列法来证明。
如果您喜欢作者,您的关注与点赞都是对作者最大的鼓励!