无限循环小数四则运算_中学最烧脑的问题之颠覆三观——0.999无限循环竟然等于1?...

本文探讨了无限循环小数0.999...是否等于1的问题,通过通俗易懂的方式解释了实数理论中的等价类概念,并区分了自然数、有理数与实数的不同表示方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

aa1bd33b3bb6a14594eca1868341ee91.png

写在前面

别以为你穿个贵点的马甲我就不认识你是1了!

疑惑不解的0.999...

a47a020edb8c8101b7c232e514dc8140.png

在中学我相信大家一定听说过

58c76bc0dd5aad72d61a2bda7c380e7b.png

这个传说吧,我记得当时是一个同学给我讲的,奈何我当时年少轻狂,一口否认肯定不等于,还大言不惭地说什么无限靠近永不相交。现在想想是我年少无知。

那么这个和1靠的非常近的无限循环小数到底等不等于1呢?阿拉丁今天就好好和大家探讨一下(为了让更多的人可以听懂,阿拉丁不会讲关于实数理论的严格证明)

5c90a68d907cf5a421686cc2448408cb.png

一些所谓的证明

在正式讨论之前我们先来看看“民间数学家”的非主流证明

分数证明

4d74aa449784612d9a0f835d2626eb19.png

这个证明真的是华丽中透着一丝丝朴素,矛盾中透着一丝丝合理,妖艳中透着一丝丝淡雅......

看似无懈可击、天衣无缝,实则偷换概念,利用人的惯性思维。

5440b8ccea4a63a5dcb5458e575b44bc.png

方程证明

78121904e65ac630531b89f0a794180d.png

哇塞,好棒棒,又是一个看似天衣无缝,闭月羞花、倾国倾城.....咦好像不太对,哎呀别在意。这样证明的存在到底是人性的扭曲还是道德的沦丧?

阿拉丁有话说

以上两种证明是现在市面上比较普遍的证明。当然,这种证明的存在即有合理性,我们只能说这些证明有问题,但不能说他们不应该存在,阿拉丁觉得有了这些的存在,才能引发人们对于数学的思考。

那为什么说这些证明是不对的呢?其实他们只是偷换了概念,利用惯性思维罢了。在中学课本上从来没有任何地方定义过无限小数的加、减、乘、除四则运算吧,所以无论说

c36eae44e146bc088f24d4eddc4bdd98.png

还是

7a650375f82eee83662972e2dd1def5c.png

都是我们惯性思维照搬有限小数的四则运算罢了。他们如何相等,我们并不知道。

8ad0070512e33bd5c504a1a8fdf007e4.png

相等的意义

那么下面阿拉丁就尽量用大家都能听得懂的方式来解释一下为什么

c0559e7a2e7fd5166a29891ded2b83c7.png

分数相等的意义

我们小学学过自然数,在自然数范围内,表示是唯一的,比如说2=2一定成立,不可能在自然数中除了2还有什么数字 A ,使得 A=2。

但是上了上了初中以后我们学习了有理数,其实就是说分数的概念。那么表示就不唯一了。比如还是2,我们可以表示成

3618771945141d69390911b87e287971.png

等等

其实分数这样的表示是一种“家族式表示”就是一种的概念,当数系从自然数扩展到有理数,每一个数都是有无限多个相等的数组成的类,我们称之为 “等价类” ,所谓两个分数相同,指的就是他们两个属于同一个等价类。

可以说在自然数系里每一个数都是孤独的,而在有理数系中每一个数都有着无数的和它相等等 小伙伴陪着它。也就是说分数或者有理数是以等价类的形式存在的

0a492ca33d05c242eac0a410a1fb56e1.png

实数相等的意义

那么随着数系的扩充有理数扩展到实数,这里可能有一点点小难理解,需要用到极限的概念。

我们表示一个数的常用方法是把任意一个实数看做收敛的有理数列。这就是说,所谓实数,就是 “极限相同的有理数列” 的共同体,因此它也是一个等价类。

举个例子,比如两个有理数列

0ec33d5b705515df8d79d30eecfdaa3e.png

满足

9245d27fcf0e2566595dd43994c12deb.png

,则说两者属于一个等价类。

我们把每一个等价类都当做一个对象来看待,这里的对象指的是一列有理数,比如

根号2 就可以表示为

8c95ff3e728fbbd82435075581849c54.png

(即根号2 的不足近似值组成),也可以表示为

062e60fdb2f3b004bd7e0d0d2b07cbe4.png

(即根号2的过剩近似)。因此我们可以看到 根号2有着无数的极限相同的有理数列表示,它们属于同一个等价类。

ef4c199b63d8423305985732e3a7a405.png

因此我们说

db5115266a4c00ed81474301ef383427.png

ae9ef3389d5c363b893dd694ffa1faf2.png

都是收敛到1的有理数列。在这个意义上,它们属于同一个等价类,代表同一个实数。

于是可以写成

06bc334a0ec5ee2b01fcf9cfd43136af.png

也就是我们今天的主题

719ecacb8e29060ab29c5653fa38b36e.png

阿拉丁有话说

由此看来,有理数的表示不唯一,由彼此相等的分数构成等价类。而实数表示也不唯一,可以表示为收敛的无限数列,具有相同极限的有理数列构成等价类。

因此

b15bdf63c90e1256f774de796c6c65d6.png

不再是数与数之间的概念,而是类与类之间的概念。

今天你学废了吗?

19f6b2e56648abc43d58bad246ac06e5.png

后记

这个问题其实对于中学生来说有点超纲,但是实实在在可以作为数学类的科普,阿拉丁在网上看到很多关于这方面的讨论,大多数是网络喷子啥也不懂乱喷人。不过有兴趣的同学也可以去了解一下这个问题的严谨证明,通常可以用戴德金分割和柯西序列法来证明。

如果您喜欢作者,您的关注与点赞都是对作者最大的鼓励!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值