数值分析用MATLAB实验报告,数值分析matlab实验报告

该实验使用MATLAB进行以函数xkk0为基的3次多项式最小二乘拟合,对给定数据点进行拟合。程序计算了拟合参数、平方误差并绘制了拟合曲线。结果显示平方误差为2.17619e-005,参数为[1.99911, -2.99767, -3.96825e-005, 0.549119]。拟合图形展示了离散数据点与拟合曲线的对比。
摘要由CSDN通过智能技术生成

数值分析实验,matlab

实验3.1最小二乘拟合

一、实验内容

编制以函数 xk k 0为基的多项式最小二乘拟合程序,并用于对下表中数据作3次

6-51-jpg_6_0_______-642-0-0-642.jpg

n

取权数

i

n

akx

k

1,求拟合曲线

k 0

中的参数 ak 、平方误差 2,并作离散

数据 xi,yi 的拟合函数y

*(x)

的图形.

二、实验程序 function chapter3 x0=-1:0.5:2;

y0=[-4.447 -0.452 0.551 0.048 -0.447 0.549 4.552]; n=3;

alph=polyfit(x0,y0,n); y=polyval(alph,x0); r=(y0-y)*(y0-y)'; x=-1:0.01:2;

y=polyval(alph,x); plot(x,y,'k--');

xlabel('x');ylabel('y0 * and polyfit. y-.'); hold on;

plot(x0,y0,'*');

title('离散数据的多项式拟合'); grid on;

disp(['平方误差:',sprintf('%g',r)]); disp(['参数alph:',sprintf('%g\t',alph)])

三、实验结果及分析

输出结果:

平方误差:2.17619e-005

参数alph:1.99911 -2.99767 -3.96825e-005 0.549119

离散数据的拟合函数图形为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值