摘要:
Die Beziehungen zwischen Mathematik und Erkenntnistheorie sind so alt, wie Mathematik und Philosophie, und es ist nicht ausgeschlossen, da die Trübung, unter der dies mehr als 2000 Jahre alte Verhltnis seit etwa 150 Jahren leidet, nicht in der Natur der Sache liegt, sondern auf einem Miverstndnis beruht, das sich beheben lt. Der Beitrag der Mathematik hierzu ist die sorgsame Bearbeitung ihrer eigenen Grundlagen, welche erst mit Dedekinds Definition der reellen Zahlen wieder die Strenge erlangte, die EUDOXOS in seiner Theorie der Grenverhltnisse als Ma gesetzt hatte und welche dann bei dem Versuch der Definition der natürlichen Zahlen aus der Logik zunchst zu der sog. Grundlagenkrise der Mathematik oder zu der Krise der rationalistischen Ontologie des Denkbaren, wie wir lieber gleich dafür sagen wollen, führte und bei der Bereinigung dieser Krise zu einer bemerkenswert schlichten Auffassung von der erreichbaren Gewiheit und Art mathematischer Einsicht kam, nmlich zu HILBERTS metamathematischer Auffassung der Mathematik. Wenn es nun so aussieht, als ob diese Bereinigung, sofern sie auf das rein Mathematische eingeschrnkt wird, im Prinzip zu einem Abschlu gekommen ist, so sind doch damit die mannigfaltigen erkenntnistheoretischen Gesichtspunkte, die gelegentlich in dieser Entwicklung zur Geltung gebracht worden sind, durchaus nicht gegeneinander abgeklrt. . Und die Angleichung der Erkenntnistheorie an die Methoden der mathematischen Logik, wie sie z. B. im Neopositivismus vorgenommen wurde, hat das Zerwürfnis zwischen Mathematik und Philosophie nur durch ein hnliches Zerwürfnis ergnzt, das nach der Heftigkeit, mit der es bestritten wird, zu urteilen, ein philosophischer Schulstreit sein mu.
展开