matlab聚类算法,科学网—matlab-聚类算法笔记 - 孙月芳的博文

MATLAB提供了两种方法进行聚类分析:

1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;

2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

clusterdata

一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;

Construct clusters from data

Syntax

T = clusterdata(X, cutoff)

T = clusterdata(X,'param1',val1,'param2',val2,...)

clusterdata是用plist、linkage、cophenetic三个函数对数据X进行聚类的;

X是m×n的矩阵,cutoff是一个阈值,使得聚类数划分等级的。

'distance':Any of the distance metric names allowed by pdist (follow the 'minkowski' option by the value of the exponent p);任何距离量度的统称(例如minkowski距离,欧式距离,马氏距离等)

'linkage'Any of the linkage methods allowed by the linkage function,(使用linkage的任何连接方法)

'cutoff'Cutoff for inconsistent or distance measure(不一致或距离的测量)

'maxclust'Maximum number of clusters to form(最大数量的聚类形式)

'criterion' Either 'inconsistent' or 'distance'(不一致或距离)

'depth'Depth for computing inconsistent values(计算深度不一致性)

例1

X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];

T=clusterdata(X,0.9);

例2

rand('state',12); %对随机数使用“state”方法进行随机数输出

X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5]; %使用随机数组成一个10行3列的数据

T = clusterdata(X,'maxclust',3); %对X数组进行聚类,聚成3类

find(T==2)%找到分类为2的类的索引

ans =

11

12

13

14

15

16

17

18

19

20

X的随机值为=

0.526563655116966 0.314160189162942 0.080065636597459

0.750205183120925 0.460299825114432 0.898696464610818

0.665461227195465 0.694011417546359 0.910465702645885

0.964047588742116 0.001430822000113 0.739874220859649

0.108159056609906 0.553028790706944 0.066380478467501

0.931359132232088 0.825424913690079 0.952315438754947

0.678086959238781 0.341903966913527 0.561481952384538

0.982730942848522 0.704605210117893 0.087097863371214

0.61469160803023 0.046998923124057 0.60240645087182

0.580161260939054 0.917354969151808 0.588163845515278

1.382463100625415 1.963581607169883 1.944378753177476

2.10675860143888 1.67148731861097 1.348544774679616

1.398800733731886 1.661420472538929 1.322245532927235

1.714104593458096 1.491763801233318 1.45432173385559

1.541023406502844 1.843749450951724 1.646589531966269

2.085124805604476 1.845243529032419 2.173408525894387

1.307487415137871 1.538016451755838 2.160077353655978

1.414477011958066 1.993290719360019 1.991074187198809

1.6194348823557 1.477032783770685 1.897881627154902

1.59880598537658 1.549889835739045 1.575633454910911

3.372473795296814 2.696353072311677 3.399817031232327

3.137051221640599 3.365280920827324 3.060890738629505

3.294132532102184 3.19619501414256 2.907001691195813

2.655105137336478 3.067858951189933 2.971985435647922

3.309410399232246 2.592839654750768 2.577141096894014

2.59557218643413 3.334773703571633 3.087931862332622

2.58206179687188 3.416156742412155 3.264419917354281

2.71127001520713 2.770324454152381 2.634665034882088

2.796178480239203 3.254737176245175 3.418015616180941

2.647417542325437 2.545380417876791 3.253541134557589

发现随机值《5,

当改动X(9,1)=500时,看一些分类结果,根据经验可知X(9,1)会被单独分成一类:

find(T==3)

ans =

9

find(T==2)

ans =

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

>> find(T==1)

ans =

21

22

23

24

25

26

27

28

29

30

转载本文请联系原作者获取授权,同时请注明本文来自孙月芳科学网博客。

链接地址:http://blog.sciencenet.cn/blog-582961-504552.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值