c语言链表桶排序,【排序】图解桶排序

一、思想

一句话总结:划分多个范围相同的区间,每个子区间自排序,最后合并。

桶排序是计数排序的扩展版本,计数排序可以看成每个桶只存储相同元素,而桶排序每个桶存储一定范围的元素,通过映射函数,将待排序数组中的元素映射到各个对应的桶中,对每个桶中的元素进行排序,最后将非空桶中的元素逐个放入原序列中。

桶排序需要尽量保证元素分散均匀,否则当所有数据集中在同一个桶中时,桶排序失效。

二、图解过程

三、核心代码

public static void bucketSort(int[] arr){

// 计算最大值与最小值

int max = Integer.MIN_VALUE;

int min = Integer.MAX_VALUE;

for(int i = 0; i < arr.length; i++){

max = Math.max(max, arr[i]);

min = Math.min(min, arr[i]);

}

// 计算桶的数量

int bucketNum = (max - min) / arr.length + 1;

ArrayList> bucketArr = new ArrayList<>(bucketNum);

for(int i = 0; i < bucketNum; i++){

bucketArr.add(new ArrayList());

}

// 将每个元素放入桶

for(int i = 0; i < arr.length; i++){

int num = (arr[i] - min) / (arr.length);

bucketArr.get(num).add(arr[i]);

}

// 对每个桶进行排序

for(int i = 0; i < bucketArr.size(); i++){

Collections.sort(bucketArr.get(i));

}

// 将桶中的元素赋值到原序列

int index = 0;

for(int i = 0; i < bucketArr.size(); i++){

for(int j = 0; j < bucketArr.get(i).size(); j++){

arr[index++] = bucketArr.get(i).get(j);

}

}

}

四、复杂度分析

1. 时间复杂度:O(N + C)

对于待排序序列大小为 N,共分为 M 个桶,主要步骤有:

N 次循环,将每个元素装入对应的桶中M 次循环,对每个桶中的数据进行排序(平均每个桶有 N/M 个元素)

一般使用较为快速的排序算法,时间复杂度为

O

(

N

l

o

g

N

)

O(NlogN)

O(NlogN),实际的桶排序过程是以链表形式插入的。

整个桶排序的时间复杂度为:

O

(

N

)

+

O

(

M

(

N

/

M

l

o

g

(

N

/

M

)

)

)

=

O

(

N

(

l

o

g

(

N

/

M

)

+

1

)

)

O(N)+O(M*(N/M*log(N/M)))=O(N*(log(N/M)+1))

O(N)+O(M∗(N/M∗log(N/M)))=O(N∗(log(N/M)+1))

当 N = M 时,复杂度为

O

(

N

)

O(N)

O(N)

2. 额外空间复杂度:O(N + M)

五、稳定性分析

桶排序的稳定性取决于桶内排序使用的算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值