matlab实验五自定义函数及导数应用shiyandaan,数学实验答案

数学实验报告

专业:

班级:

学号:

姓名:

一. 实验题目

1. 用MATLAB

编程求极限:⑴lim n →∞

2. 用MATLAB 编程求解方程:⑵e x -3x =0在[-1,1]上的近似解;

3. 用MATLAB 编程求函数的导数:⑴设y =x 2sin x ,求y (10) ;

4. 用MATLAB 编程求函数的积分:⑴⎰4x +2

2x +10dx ;

5. 用MATLAB 画图(5)x 2+y 2-z 2=1, 如下图:

6. 用MATLAB 编程求解微分方程:(5)y '''+y ''-2y '=x (e x +4) 。

二. 实验过程(程序)

题目一:(1)用MATLAB

编程求极限lim n 过程: Mat lab输入命令:syms n;

limit((n)^(1/n) ,n,inf)

Mat lab输出结果:ans = 1

题目二:(2)e x -3x =0在[-1,1]上的近似解;

过程: Mat lab输入命令:syms x;

f='exp(x)-3*x';

fzero(f,[-1,1])

Mat lab输出结果:ans =

0.6191 %定义函数f

题目三:(1)用MATLAB 编程求函数的导数:设y =x 2sin x ,求y (10) ;

过程: Mat lab输入命令:>> syms x;

>> f=sym((x^2)*sin(x))

f = x^2*sin(x)

>> diff(f,'x',10)

Mat lab输出结果:ans = 90*sin(x) - x^2*sin(x) + 20*x*cos(x)

题目四:(1)用MATLAB 编程求函数的积分⎰4x +2

x +10dx ;

过程: Mat lab输入命令: syms x;

int((x+2)/sqrt(2*x+1),0,4) Mat lab输出结果: ans = 22/3

题目五:(5)用MATLAB 画图x 2+y 2-z 2=1, 如下图:

过程: Mat lab输入命令:x=-4:4;y=x;

[x,y]=meshgrid(x,y);

z= y.^2+x.*y;

subplot(1,2,1), mesh(x,y,z); %三维网格图 colormap(hot);

title z=y^2+xy

Mat lab输出结果:

题目六:(5)用MATLAB 编程求解微分方程y '''+y ''-2y '=x (e x +4) 。 过程:Mat lab输入命令:>> syms x y

>> y=dsolve('D3y+D2y-2*Dy=x*(exp(x)+4)','x')

Mat lab输出结果:y = C2/6 + x/3 + (4*exp(x))/27 + C3*exp(x) - (x*exp(x))/9 - exp(x)*(x/3 + (4*x*exp(-x))/3 + (2*x^2*exp(-x))/3 - exp(-x)*(C2/3 - 4/3) - x^2/6) - x^2/3 + C4*exp(-2*x) - 1/6

三.实验结果

题目一:(1)用MATLAB

编程求极限lim 1. n 题目二:(2)e x -3x =0在[-1,1]上的近似解为 0.6191。

题目三:(1)用MATLAB 编程求函数的导数:设y =x 2sin x ,求y (10) ,结果为ans = 90*sin(x) - x^2*sin(x) + 20*x*cos(x)

题目四:(1)用MATLAB 编程求函数的积分⎰4x +2

x +10dx ,结果是22/3。

题目五:(5)用MATLAB 画图x 2+y 2-z 2=1, 如下图:

题目六:(5)用MATLAB 编程求解微分方程y '''+y ''-2y '=x (e x +4) ,结果为:

y = C2/6 + x/3 + (4*exp(x))/27 + C3*exp(x) - (x*exp(x))/9 - exp(x)*(x/3 + (4*x*exp(-x))/3 + (2*x^2*exp(-x))/3 - exp(-x)*(C2/3 - 4/3) - x^2/6) - x^2/3 + C4*exp(-2*x) - 1/6

四. 结果分析与讨论

运用MATLAB 软件得出的结果与通过公式计算得出的结果一致。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值